Environmental Science and Pollution Research

, Volume 22, Issue 2, pp 1344–1356 | Cite as

Persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil

  • John Mumbo
  • Bernhard Henkelmann
  • Ahmed Abdelaziz
  • Gerd Pfister
  • Nghia Nguyen
  • Reiner Schroll
  • Jean Charles Munch
  • Karl-Werner SchrammEmail author
Research Article


Halogenated carbazoles have recently been detected in soil and water samples, but their environmental effects and fate are unknown. Eighty-four soil samples obtained from a site with no recorded history of pollution were used to assess the persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil under controlled conditions for 15 months. Soil samples were divided into two temperature conditions, 15 and 20 °C, both under fluctuating soil moisture conditions comprising 19 and 44 drying–rewetting cycles, respectively. This was characterized by natural water loss by evaporation and rewetting to −15 kPa. Accelerated solvent extraction (ASE) and cleanup were performed after incubation. Identification and quantification were done using high-resolution gas chromatogram/mass spectrometer (HRGC/MS), while dioxin-like toxicity was determined by ethoxyresorufin-O-deethylase (EROD) induction in H4IIA rat hepatoma cells assay and multidimensional quantitative structure–activity relationships (mQSAR) modelling. Carbazole, 3-chlorocarbazole and 3,6-dichlorocarbazole were detected including trichlorocarbazole not previously reported in soils. Carbazole and 3-chlorocarbazole showed significant dissipation at 15 °C but not at 20 °C incubating conditions indicating that low temperature could be suitable for dissipation of carbazole and chlorocarbazoles. 3,6-Dichlorocarbazole was resistant at both conditions. Trichlorocarbazole however exhibited a tendency to increase in concentration with time. 3-Chlorocarbazole, 3,6-dibromocarbazole and selected soil extracts exhibited EROD activity. Dioxin-like toxicity did not decrease significantly with time, whereas the sum chlorocarbazole toxic equivalence concentrations (∑TEQ) did not contribute significantly to the soil assay dioxin-like toxicity equivalent concentrations (TCDD-EQ). Carbazole and chlorocarbazoles are persistent with the latter also toxic in natural conditions.


Carbazole Bromocarbazole and chlorocarbazole Dissipation EROD mQSAR Persistence Temperature Toxicity 



This research was performed in Molecular EXposomics laboratory. It was supported by Helmholtz Zentrum München, Deutscher Akademischer Austauschdienst (DAAD) and National Council for Science and Technology-Kenya (NCST). Soil used in this research was provided by Dr. Arthur Reischl of Bayerisches Landesamt für Umwelt, Germany. We appreciate the Institute of Soil Ecology (IoSE) at Helmholtz Zentrum München for providing the Sand/Kaolin box used in the determination of soil water potential and space at the lysimeter for our soil incubation experiment. The support of Helmholtz Zentrum Library in getting access to relevant and current literature is also appreciated. We wish to thank Dr. Walkiria Levy for her contribution in the EROD bioassay, Ms Claudia Corsten and Mr Norbert Fischer of MEX for ensuring the biological and dioxin laboratories are set up for our experimental work and Mr Felix Antritter assistance with dioxin analysis. We also acknowledge the significant contributions of two anonymous reviewers.

Supplementary material

11356_2014_3386_MOESM1_ESM.doc (934 kb)
ESM 1 (DOC 934 kb)


  1. Alletto L, Coquet Y, Benoit P, Bergheaud V (2006) Effects of temperature and water content on degradation of isoproturon in three soil profiles. Chemosphere 64(7):1053–1061. doi: 10.1016/j.chemosphere.2005.12.004 CrossRefGoogle Scholar
  2. Asplund G, Grimvall A, Pettersson C (1989) Naturally produced adsorbable organic halogens (AOX) in humic substances from soil and water. Sci Total Environ 81–82:239–248. doi: 10.1016/0048-9697(89)90130-7 CrossRefGoogle Scholar
  3. Belkin S, Stieber M, Tiehm A, Frimmel FH, Abeliovich A, Werner P, Ulitzur S (1994) Toxicity and genotoxicity enhancement during polycyclic aromatic hydrocarbons’ biodegradation. Environ Toxicol Water Qual 9(4):303–309. doi: 10.1002/tox.2530090409 CrossRefGoogle Scholar
  4. Birnbaum LS (1985) The role of structure in the disposition of halogenated aromatic xenobiotics. Environ Health Perspect 61:11–20CrossRefGoogle Scholar
  5. Böhnhardt A (2013) Identification of potential PBT/vPvB substances by QSAR methods. Texte | 71/2013. Federal Environment Agency (Umweltbundesamt), Dessau-RoßlauGoogle Scholar
  6. Brooke D, Burns JS (2010) Environmental prioritisation of low production volume substances under REACH. PBT screening. Environment Agency report. Environment Agency, BristolGoogle Scholar
  7. Brown TN, Wania F (2008) Screening chemicals for the potential to be persistent organic pollutants: a case study of arctic contaminants. Environ Sci Technol 42(14):5202–5209. doi: 10.1021/es8004514 CrossRefGoogle Scholar
  8. Chaîneau CH, Yepremian C, Vidalie JF, Ducreux J, Ballerini D (2003) Bioremediation of a crude oil—olluted soil: biodegradation, leaching, and toxicity assessments. Water Air Soil Pollut 144(1/4):419–440. doi: 10.1023/A:1022935600698 CrossRefGoogle Scholar
  9. Davis JW, Madsen S (1996) Factors affecting the biodegradation of toluene in soil. Chemosphere 33(1):107–130CrossRefGoogle Scholar
  10. Di Toro S, Zanaroli G, Fava F (2006) Intensification of the aerobic bioremediation of an actual site soil historically contaminated by through bioaugmentation with a non acclimated, complex source of microorganisms polychlorinated biphenyls (PCBs). Microb Cell Fact 5(1):11. doi: 10.1186/1475-2859-5-11 CrossRefGoogle Scholar
  11. Donato M, Gomezlechon M, Castell J (1993) A microassay for measuring cytochrome P450IA1 and cytochrome P450IIB1 activities in intact human and rat hepatocytes cultured on 96-well plates. Anal Biochem 213(1):29–33. doi: 10.1006/abio.1993.1381 CrossRefGoogle Scholar
  12. ECHA (2012) Guidance on information requirements and chemical safety assessment. Chapter R.11: PBT assessment. Guidance for the implementation of REACH. Version 1.1, ECHA-12G-24-EN. European Chemicals Agency, FinlandGoogle Scholar
  13. Eriksson M, Sodersten E, Yu Z, Dalhammar G, Mohn WW (2003) Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl Environ Microbiol 69(1):275–284. doi: 10.1128/AEM.69.1.275-284.2003 CrossRefGoogle Scholar
  14. Eweis JB, Eweis-Ergas-Chang-Schroeder (1998) Bioremediation principles. McGraw-Hill series in water resources and environmental engineering. WCB/McGraw-Hill, BostonGoogle Scholar
  15. Fiedler H, Lau C, Kjeller L, Rappe C (1996) Patterns and sources of polychlorinated dibenzo-p-dioxins and dibenzofurans found in soil and sediment samples in Southern Mississippi. Chemosphere 32(3):421–432. doi: 10.1016/0045-6535(96)00001-X CrossRefGoogle Scholar
  16. Grigoriadou A, Schwarzbauer J (2011) Non-target screening of organic contaminants in sediments from the industrial coastal area of Kavala City (NE Greece). Water Air Soil Pollut 214(1–4):623–643. doi: 10.1007/s11270-010-0451-8 CrossRefGoogle Scholar
  17. Heim S, Schwarzbauer J, Kronimus A, Littke R, Woda C, Mangini A (2004) Geochronology of anthropogenic pollutants in riparian wetland sediments of the Lippe River (Germany). Org Geochem 35(11–12):1409–1425. doi: 10.1016/j.orggeochem.2004.03.008 CrossRefGoogle Scholar
  18. Hjelm O, Johansson M, Öberg-Asolund G (1995) Organically bound halogens in coniferous forest soil—distribution pattern and evidence of in situ production. Chemosphere 30(12):2353–2364. doi: 10.1016/0045-6535(95)00107-J CrossRefGoogle Scholar
  19. Hoekstra EJ, de Weerd H, de Leer EWB, Brinkman UAT (1999) Natural formation of chlorinated phenols, dibenzo- p -dioxins, and dibenzofurans in soil of a Douglas fir forest. Environ Sci Technol 33(15):2543–2549. doi: 10.1021/es9900104 CrossRefGoogle Scholar
  20. Jensen A, Finster KW, Karlson U (2003) Degradation of carbazole, dibenzothiophene, and dibenzofuran at low temperature by Pseudomonas sp. strain C3211. Environ Toxicol Chem 22(4):730–735CrossRefGoogle Scholar
  21. Kästner M, Breuer-Jammali M, Mahro B (1998) Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl Environ Microbiol 64(1):359–362Google Scholar
  22. Kaur Bindra S, Narang RS (1995) Combustion of flame retardants. Chemosphere 31(11–12):4413–4425. doi: 10.1016/0045-6535(95)00310-5 CrossRefGoogle Scholar
  23. Kearney PC, Woolson EA, Ellington CP (1972) Persistence and metabolism of chlorodioxins in soils. Environ Sci Technol 6(12):1017–1019. doi: 10.1021/es60071a010 CrossRefGoogle Scholar
  24. Keppler F, Eiden R, Niedan V, Pracht J, Schöler HF (2000) Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 403(6767):298–301. doi: 10.1038/35002055 CrossRefGoogle Scholar
  25. Krone CA, Burrows DG, Brown DW, Robisch PA, Friedman AJ, Malins DC (1986) Nitrogen-containing aromatic compounds in sediments from a polluted harbor in Puget Sound. Environ Sci Technol 20(11):1144–1150. doi: 10.1021/es00153a010 CrossRefGoogle Scholar
  26. Kronimus A, Schwarzbauer J, Dsikowitzky L, Heim S, Littke R (2004) Anthropogenic organic contaminants in sediments of the Lippe river, Germany. Water Res 38(16):3473–3484. doi: 10.1016/j.watres.2004.04.054 CrossRefGoogle Scholar
  27. Latumus F, Mehrtens G, Grøn C (1995) Haloperoxidase-like activity in spruce forest soil — a source of volatile halogenated organic compounds? Chemosphere 31(7):3709–3719. doi: 10.1016/0045-6535(95)00220-3 CrossRefGoogle Scholar
  28. Lauby-Secretan B, Baan R, Grosse Y, Ghissassi FE, Bouvard V, Benbrahim-Tallaa L, Guha N, Galichet L, Straif K (2011) Bitumens and bitumen emissions, and some heterocyclic polycyclic aromatic hydrocarbons. Lancet Oncol 12(13):1190–1191. doi: 10.1016/S1470-2045(11)70359-X CrossRefGoogle Scholar
  29. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315Google Scholar
  30. Lee S, Williams GA, Brown GD (1999) Maculalactone L and three halogenated carbazole alkaloids from Kyrtuthrix maculans. Phytochemistry 52(3):537–540. doi: 10.1016/S0031-9422(99)00226-5 CrossRefGoogle Scholar
  31. Liu D, Maguire RJ, Pacepavicius G, Dutka BJ (1991) Biodegradation of recalcitrant chlorophenols by cometabolism. Environ Toxicol Water Qual 6(1):85–95. doi: 10.1002/tox.2530060108 CrossRefGoogle Scholar
  32. Luk KC, Stern L, Weigele M, O’Brien RA, Spirt N (1983) Isolation and identification of “diazepam-like” compounds from bovine urine. J Nat Prod 46(6):852–861CrossRefGoogle Scholar
  33. Lundstedt S, Haglund P, Oberg L (2003a) Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an aged gasworks soil. Environ Toxicol Chem 22(7):1413–1420CrossRefGoogle Scholar
  34. Lundstedt S, Haglund P, Öberg L (2003b) Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an aged gasworks soil. Environ Toxicol Chem 22(7):1413–1420. doi: 10.1002/etc.5620220701 CrossRefGoogle Scholar
  35. Manilal V, Alexander M (1991) Factors affecting the microbial degradation of phenanthrene in soil. Appl Microbiol Biotechnol 35(3). doi:  10.1007/BF00172733
  36. Mumbo J, Lenoir D, Henkelmann B, Schramm K (2013) Enzymatic synthesis of bromo- and chlorocarbazoles and elucidation of their structures by molecular modeling. Environ Sci Pollut Res 20(12):8996–9005. doi: 10.1007/s11356-013-1823-6 CrossRefGoogle Scholar
  37. Myneni SCB (2002) Formation of stable chlorinated hydrocarbons in weathering plant material. Science 295(5557):1039–1041. doi: 10.1126/science.1067153 CrossRefGoogle Scholar
  38. Ngigi A, Dörfler U, Scherb H, Getenga Z, Boga H, Schroll R (2011) Effect of fluctuating soil humidity on in situ bioavailability and degradation of atrazine. Chemosphere 84(4):369–375. doi: 10.1016/j.chemosphere.2011.03.068 CrossRefGoogle Scholar
  39. Öberg G, Brunberg H, Hjelm O (1997) Production of organically-bound chlorine during degradation of birch wood by common white-rot fungi. Soil Biol Biochem 29(2):191–197. doi: 10.1016/S0038-0717(96)00242-8 CrossRefGoogle Scholar
  40. Poiger T, Buser H, Müller MD (2001) Photodegradation of the pharmaceutical drug diclofenac in a lake: pathway, field measurements, and mathematical modeling. Environ Toxicol Chem 20(2):256–263. doi: 10.1002/etc.5620200205 CrossRefGoogle Scholar
  41. Providenti MA, Lee H, Trevors JT (1993) Selected factors limiting the microbial degradation of recalcitrant compounds. J Ind Microbiol 12(6):379–395. doi: 10.1007/BF01569669 CrossRefGoogle Scholar
  42. Reischl A, Joneck M, Dumler-Gradl R (2005) Chlorcarbazole in Böden. UWSF - Z Umweltchem Ökotox 17(4):197–200. doi: 10.1065/uwsf2005.10.105 CrossRefGoogle Scholar
  43. Rossato G, Ernst B, Smiesko M, Spreafico M, Vedani A (2010) Probing small-molecule binding to cytochrome P450 2D6 and 2C9: an in silico protocol for generating toxicity alerts. ChemMedChem 5(12):2088–2101. doi: 10.1002/cmdc.201000358 CrossRefGoogle Scholar
  44. Schmidt AW, Reddy KR, Knölker H (2012) Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chem Rev 112(6):3193–3328. doi: 10.1021/cr200447s CrossRefGoogle Scholar
  45. Schroll R, Becher HH, Dörfler U, Gayler S, Grundmann S, Hartmann HP, Ruoss J (2006) Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environ Sci Technol 40(10):3305–3312CrossRefGoogle Scholar
  46. Schwirzer SM, Hofmaier AM, Kettrup A, Nerdinger PE, Schramm K, Thoma H, Wegenke M, Wiebel FJ (1998) Establishment of a simple cleanup procedure and bioassay for determining 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity equivalents of environmental samples. Ecotoxicol Environ Saf 41(1):77–82. doi: 10.1006/eesa.1998.1670 CrossRefGoogle Scholar
  47. Sebaı TE, Devers M, Lagacherie B, Rouard N, Soulas G, Martin-Laurent F (2010) Diuron mineralisation in a Mediterranean vineyard soil: impact of moisture content and temperature. Pest Manag Sci 66(9):988–995. doi: 10.1002/ps.1971 CrossRefGoogle Scholar
  48. Shim J, MacKerell JD (2011) Computational ligand-based rational design: role of conformational sampling and force fields in model development. Med. Chem Commun 2(5):356CrossRefGoogle Scholar
  49. Sidhu JS, Kavanagh TJ, Reilly MT, Omiecinski CJ (1993) Direct determination of functional activity of cytochrome P-4501A1 and NADPH DT-diaphorase in hepatoma cell lines using noninvasive scanning laser cytometry. J Toxicol Environ Health 40(2–3):177–194. doi: 10.1080/15287399309531786 CrossRefGoogle Scholar
  50. SIMS JL, SIMS RC, Mattthews JE (1990) Approach to bioremediation of contaminated soil. Hazard Waste Hazard Mater 7(2):117–149. doi: 10.1089/hwm.1990.7.117 CrossRefGoogle Scholar
  51. Takasuga T, Takemori H, Yamamoto T, Higashino K, Sasaki Y, Weber R (2009) The fingerprint of chlorinated aromatic compounds in contaminated sites from chloralkali process and a historic chlorine production using GC-HR-TOF-MS screening. Organohalogen Compd 71:2239–2244Google Scholar
  52. Tillitt DE, Kubiak TJ, Ankley GT, Giesy JP (1993) Dioxin-like toxic potency in Forster’s tern eggs from Green Bay, Lake Michigan, North America. Chemosphere 26(11):2079–2084. doi: 10.1016/0045-6535(93)90033-2 CrossRefGoogle Scholar
  53. Tittlemier SA, Fisk AT, Hobson KA, Norstrom RJ (2002) Examination of the bioaccumulation of halogenated dimethyl bipyrroles in an Arctic marine food web using stable nitrogen isotope analysis. Environ Pollut 116(1):85–93CrossRefGoogle Scholar
  54. Tröbs L, Henkelmann B, Lenoir D, Reischl A, Schramm K (2011) Degradative fate of 3-chlorocarbazole and 3,6-dichlorocarbazole in soil. Environ Sci Pollut Res 18(4):547–555. doi: 10.1007/s11356-010-0393-0 CrossRefGoogle Scholar
  55. Vedani A, Dobler M, Lill MA (2005) Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor †. J Med Chem 48(11):3700–3703. doi: 10.1021/jm050185q CrossRefGoogle Scholar
  56. Vedani A, Dobler M, Lill MA (2006) The challenge of predicting drug toxicity in silico. Basic Clin Pharmacol Toxicol 99(3):195–208. doi: 10.1111/j.1742-7843.2006.pto_471.x CrossRefGoogle Scholar
  57. Vedani A, Dobler M, Smieško M (2012) VirtualToxLab—a platform for estimating the toxic potential of drugs, chemicals and natural products. Toxicol Appl Pharmacol 261(2):142–153. doi: 10.1016/j.taap.2012.03.018 CrossRefGoogle Scholar
  58. Wild SR, Berrow ML, Jones KC (1991) The persistence of polynuclear aromatic hydrocarbons (PAHs) in sewage sludge amended agricultural soils. Environ Pollut 72(2):141–157. doi: 10.1016/0269-7491(91)90064-4 CrossRefGoogle Scholar
  59. Wittsiepe J, Kullmann Y, Schrey P, Selenka F, Wilhelm M (1999) Peroxidase-catalyzed in vitro formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chlorophenols. Toxicol Lett 106(2–3):191–200. doi: 10.1016/S0378-4274(99)00066-1 CrossRefGoogle Scholar
  60. Zarfl C, Matthies M (2013) PBT borderline chemicals under REACH. Environ Sci Eur 25(1):11. doi: 10.1186/2190-4715-25-11 CrossRefGoogle Scholar
  61. Zhu L, Hites RA (2005) Identification of brominated carbazoles in sediment cores from Lake Michigan. Environ Sci Technol 39(24):9446–9451CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • John Mumbo
    • 1
    • 2
  • Bernhard Henkelmann
    • 1
  • Ahmed Abdelaziz
    • 1
    • 2
  • Gerd Pfister
    • 1
  • Nghia Nguyen
    • 3
  • Reiner Schroll
    • 3
  • Jean Charles Munch
    • 3
  • Karl-Werner Schramm
    • 1
    • 2
    Email author
  1. 1.German Research Center for Environmental Health, Molecular EXposomics (MEX)Helmholtz Zentrum MünchenNeuherbergGermany
  2. 2.Department für Biowissenschaftliche GrundlagenTechnische Universität MünchenFreisingGermany
  3. 3.German Research Center for Environmental Health, Institute of Soil Ecology (ISE)Helmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations