Environmental Science and Pollution Research

, Volume 22, Issue 20, pp 15307–15318 | Cite as

Responses of a free-living benthic marine nematode community to bioremediation of a PAH mixture

  • Hela LouatiEmail author
  • Olfa Ben Said
  • Amel Soltani
  • Cristiana Cravo-Laureau
  • Robert Duran
  • Patricia Aissa
  • Ezzeddine Mahmoudi
  • Olivier Pringault
DECAPAGE Project: Hydrocarbon degradation in coastal sediments*


The objectives of this study were (1) to assess the responses of benthic nematodes to a polycyclic aromatic hydrocarbon (PAH) contamination and (2) to test bioremediation techniques for their efficiency in PAH degradation and their effects on nematodes. Sediments with their natural nematofauna communities from Bizerte lagoon (Tunisia) were subjected to a PAH mixture (100 ppm) of phenanthrene, fluoranthene, and pyrene during 30 days. Nematode abundance and diversity significantly decreased, and the taxonomic structure was altered. Results from multivariate analyses of the species abundance data revealed that PAH treatments were significantly different from the control. Spirinia parasitifera became the dominant species (70 % relative abundance) and appeared to be an “opportunistic” species to PAH contamination while Oncholaimus campylocercoides and Neochromadora peocilosoma were strongly inhibited. Biostimulation (addition of mineral salt medium) and bioaugmentation (inoculation of a hydrocarbonoclastic bacterium) were used as bioremediation techniques. Bioremediation treatments enhanced degradation of all three PAHs, with up to 96 % degradation for phenanthrene resulting in a significant stimulation of nematode abundance relative to control microcosms. Nevertheless, these treatments, especially the biostimulation provoked a weak impact on the community structure and diversity index relative to the control microcosms suggesting their feasibility in biorestoration of contaminated sediments.


Sediment Polycyclic aromatic hydrocarbons Free-living nematodes Community response Biostimulation Bioaugmentation 



This work was funded by the CMCU program (PHC-UTIQUE, no. 09G 0189), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), and the Faculté des Sciences de Bizerte (FSB). Dr. Emma Rochelle-Newall is gratefully acknowledged as native English speaker for her helpful criticisms on an early version of the manuscript and for English corrections.


  1. Austen MC, McEvoy AJ (1997) The use of offshore meiobenthic communities in laboratory microcosm experiments: response to heavy metal contamination. J Exp Mar Biol Ecol 211:247–261CrossRefGoogle Scholar
  2. Austen MC, McEvoy AJ, Warwick RM (1994) The specificity of meiobenthic community responses to different pollutants: results from microcosm experiments. Mar Pollut Bull 28:557–563CrossRefGoogle Scholar
  3. Barata C, Calbet A, Saiz E, Ortiz L, Bayona JM (2005) Predicting single and mixture toxicity of petrogenic polycyclic aromatic hydrocarbons to the copepod Oithona davisae. Environ Toxicol Chem 24:2992–2999CrossRefGoogle Scholar
  4. Barhoumi B, LeMenach K, Devier MH, El Megdiche Y, Hammami B, Ben Ameur W, Ben Hassine S, Cachot J, Budzinski H, Driss MR (2014) Distribution and ecological risk of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in surface sediments from the Bizerte lagoon, Tunisia. Environ Sci Poll Res 21:6290–6302CrossRefGoogle Scholar
  5. Bejarano AC, Chandler GT, He L, Coull BC (2006) Individual to population level effects of South Louisiana crude oil water accommodated hydrocarbon fraction (WAF) on a marine meiobenthic copepod. J Exp Mar Biol Ecol 332:49–59CrossRefGoogle Scholar
  6. Ben Said O, Goni-Urriza MS, El Bour M, Dellali M, Aissa P, Duran R (2008) Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments, Tunisia. J Appl Microbiol 104:987–997CrossRefGoogle Scholar
  7. Beyrem H, Mahmoudi E, Essid N, Hedfi A, Boufahja F, Aissa P (2007) Individual and combined effects of cadmium and diesel on a nematode community in a laboratory microcosm experiment. Ecotoxicol Environ Saf 68:412–418CrossRefGoogle Scholar
  8. Beyrem H, Louati H, Essid N, Aissa P, Mahmoudi E (2010) Effects of two lubricant oils on marine nematode assemblages in a laboratory microcosm experiment. Mar Environ Res 69:248–253CrossRefGoogle Scholar
  9. Boitsov S, Jensen HKB, Klungsoyr J (2009) Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAH) in sediments of south-western Barents Sea. Mar Environ Res 68:236–245CrossRefGoogle Scholar
  10. Bordenave S, Goñi-Urriza M, Vilette C, Blanchard S, Caumette P, Duran R (2008) Diversity of ring-hydroxylating dioxygenases in pristine and oil contaminated microbial mats at genomic and transcriptomic levels. Environ Microbiol 10:3201–3211CrossRefGoogle Scholar
  11. Boufahja F, Sellami B, Dellali M, Aissa P, Mahmoudi E, Beyrem H (2011) A microcosm experiment on the effects of permethrin on a free-living nematode assemblage. Nematology 13:901–909CrossRefGoogle Scholar
  12. Brion D, Pelletier E (2005) Modelling PAHs adsorption and sequestration in freshwater and marine sediments. Chemosphere 61:867–876CrossRefGoogle Scholar
  13. Carman KR, Fleeger JW, Pomarico SM (2000) Does historical exposure to hydrocarbon contamination alter the response of benthic communities to diesel contamination? Mar Environ Res 49:255–278CrossRefGoogle Scholar
  14. Carpenter S (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:677–680CrossRefGoogle Scholar
  15. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368CrossRefGoogle Scholar
  16. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  17. Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation. PRIMER-E, PlymouthGoogle Scholar
  18. Cravo-Laureau C, Duran R (2014) Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’era. Front Microbiol 5:8Google Scholar
  19. Deprez T, Merckx B, Vincx M (2005) Online identification of Mysida through NeMys. In: Mees J et al (eds) VLIZ young scientists’ day. VLIZ Special Publication, Bruges, p 31Google Scholar
  20. Engelmann HD (1973) Undersuchangen zur erfassung pedozoogener componentin difinicten okosystem, forschungober, Staatl.Mus.Naturkde, Gorlitz. J Acta Hydrobiol 23:349–361Google Scholar
  21. Eyualem A, Andrassy I, Traunspurger W (2006) Freshwater nematodes: ecology and taxonomy. CABI Publishing, CambridgeCrossRefGoogle Scholar
  22. Gewurtz S, Lazar R, Haffner G (2000) Comparison of polycyclic aromatic hydrocarbon and polychlorinated dynamics in benthic invertebrates of Lake Erie, USA. Environ Toxicol Chem 19:2943–2950CrossRefGoogle Scholar
  23. Goni-Urriza M, Cravo-Laureau C, Duran R (2013) Microbial bioremediation of aquatic environments encyclopedia of aquatic ecotoxicology. Springer, DordrechtGoogle Scholar
  24. Guo Y, Somerfield PJ, Warwick RM, Zhang Z (2001) Large-scale patterns in the community structure and biodiversity of free living nematodes in the Bohai Sea, China. J Mar Biol Assoc UK 81:755–763CrossRefGoogle Scholar
  25. Gyedu-Ababio TK, Baird D (2006) Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicol Environ Saf 63:443–450CrossRefGoogle Scholar
  26. Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182CrossRefGoogle Scholar
  27. Hedfi A, Mahmoudi E, Boufahja F, Beyrem H, Aissa P (2007) Effects of increasing levels of nickel contamination on structure of offshore nematode communities in experimental microcosms. Bull Environ Contam Toxicol 79:345–349CrossRefGoogle Scholar
  28. Hedfi A, Boufahja F, Ben Ali M, Aissa P, Mahmoudi E, Beyrem H (2013) Do trace metals (chromium, copper, and nickel) influence toxicity of diesel fuel for free-living marine nematodes? Environ Sci Poll Res 20:3760–3770CrossRefGoogle Scholar
  29. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol 23:399–489Google Scholar
  30. Hughes JB, Beckles DM, Chandra SD, Ward CH (1997) Utilization of bioremediation processes for the treatment of PAH contaminated sediments. J Ind Microbiol Biot 18:152–160CrossRefGoogle Scholar
  31. Isaac P, Sanchez LA, Nea B (2013) Indigenous PAH-degrading bacteria from oil-polluted sediments in Caleta Cordova, Patagonia Argentina. Int Biodeterior Biodegrad 82:207–214CrossRefGoogle Scholar
  32. Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643CrossRefGoogle Scholar
  33. Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88CrossRefGoogle Scholar
  34. Lambshead PJD, Platt HM, Shaw KM (1983) The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J Nat Hist 17:859–874CrossRefGoogle Scholar
  35. Landrum PF, Frez WA, Simmons MS (1992) Relationship of toxicokinetic parameters to respiration rates in Mysis relicta. J Great Lakes Res 18:331–339CrossRefGoogle Scholar
  36. Lei AP, Hu Z-L, Wong Y-S, Tam N (2007) Removal of fluoranthene and pyrene by different microalgal species. Bioresour Technol 98:273–280CrossRefGoogle Scholar
  37. Leite DS, Sandrini-Neto L, Camargo MZ, Thomas MC, Lana PC (2014) Are changes in the structure of nematode assemblages reliable indicators of moderate petroleum contamination? Mar Pollut Bull 83:38–47CrossRefGoogle Scholar
  38. Lindgren JF, Hassellov IM, Dahllof I (2012) Meiofaunal and bacterial community response to diesel additions in a microcosm study. Mar Pollut Bull 64:595–601CrossRefGoogle Scholar
  39. Louati A, Elleuch B, Kallel M, Saliot A, Dagaut J, Oudot J (2001) Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea. Mar Pollut Bull 42:445–452CrossRefGoogle Scholar
  40. Louati H, Ben Said O, Got P, Soltani A, Mahmoudi E, Cravo-Laureau C, Duran R, Aissa P, Pringault O (2013a) Microbial community responses to bioremediation treatments for the mitigation of low-dose anthracene in marine coastal sediments of Bizerte lagoon (Tunisia). Environ Sci Poll Res 20:300–310CrossRefGoogle Scholar
  41. Louati H, Ben Said O, Soltani A, Got P, Mahmoudi E, Cravo-Laureau C, Duran R, Aissa P, Pringault O (2013b) Roles of biological interactions and pollutant contamination in shaping microbial benthic community structure. Chemosphere 93:2535–2546CrossRefGoogle Scholar
  42. Louati H, Ben Said O, Soltani A, Cravo-Laureau C, Preud’Homme H, Duran R, Aissa P, Mahmoudi E, Pringault O (2014a) Impact of low dose anthracene contamination on the diversity of free-living marine benthic nematodes. Ecotoxicology 23:201–212CrossRefGoogle Scholar
  43. Louati H, Ben Said O, Soltani A, Got P, Cravo-Laureau C, Duran R, Aissa P, Pringault O, Mahmoudi E (2014b) Biostimulation as an attractive technique to reduce phenanthrene toxicity for meiofauna and bacteria in lagoon sediment. Environ Sci Poll Res 21:3670–3679CrossRefGoogle Scholar
  44. Louiz I, Kinani S, Gouze ME, Ben-Attia M, Menif D, Bouchonnet S, Porcher JM, Ben-Hassine OK, Ait-Aissa S (2008) Monitoring of dioxin-like, estrogenic and anti-androgenic activities in sediments of the Bizerta lagoon (Tunisia) by means of in vitro cell-based bioassays: contribution of low concentrations of polynuclear aromatic hydrocarbons (PAHs). Sci Total Environ 402:318–329CrossRefGoogle Scholar
  45. Mahmoudi E, Essid N, Beyrem H, Hedfi A, Boufahja F, Vitiello P, Aissa P (2005) Effects of hydrocarbon contamination on a free living marine nematode community: results from microcosm experiments. Mar Pollut Bull 50:1197–1204CrossRefGoogle Scholar
  46. Mahmoudi E, Essid N, Beyrem H, Hedfi A, Boufahja F, Vitiello P, Aissa P (2007) Individual and combined effects of lead and zinc on a free-living marine nematode community: results from microcosm experiments. J Exp Mar Biol Ecol 343:217–226CrossRefGoogle Scholar
  47. Millward RN, Carman KR, Fleeger JW, Gambrell RP, Portier R (2004) Mixtures of metals hydrocarbons elicit complex responses by a benthic invertebrate community. J Exp Mar Biol Ecol 310:115–130CrossRefGoogle Scholar
  48. Miyasaka T, Asami H, Watanabe K (2006) Impacts of bioremediation schemes on bacterial population in naphthalene-contaminated marine sediments. Biodegradation 17:227–235CrossRefGoogle Scholar
  49. Moreno M, Albertelli G, Fabiano M (2009) Nematode response to metal, PAHs and organic enrichment in tourist marinas of the Mediterranean sea. Mar Pollut Bull 58:1192–1201CrossRefGoogle Scholar
  50. Mzoughi N, Hellal F, Dachraoui M, Villeneuve JP, Cattini C, de Mora SJ, El Abed A (2002) Methodology of extraction of polycyclic aromatic hydrocarbons. Application to sediment from the Bizerte lagoon (Tunisia). C R Geosci 334:893–901CrossRefGoogle Scholar
  51. Neff JM (2002) Bioaccumulation in marine organisms. Effects of contaminants from oil well produced water. Elsevier, Amsterdam, p 452Google Scholar
  52. Neff JM, Scott AS, Donald GG (2005) Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Int Environ Assess Manag 1:22–33CrossRefGoogle Scholar
  53. Paissé S, Goñi-Urriza M, Stadler T, Budzinski H, Duran R (2012) Ring-hydroxylating dioxygenase (RHD) expression in a microbial community during the early response to oil pollution. FEMS Microbiol Ecol 80:77–86CrossRefGoogle Scholar
  54. Petersen DG, Sundback K, Larson F, Dahllof I (2009) Pyrene toxicity is affected by the nutrient status of a marine sediment community: Implications for risk assessment. Aquat Toxicol 95:37–43CrossRefGoogle Scholar
  55. Platt HM, Warwick RM (1983) A synopsis of the free-living marine nematodes. Part I. British enoplids. Cambridge University Press, CambridgeGoogle Scholar
  56. Platt HM, Warwick RM (1988) Free living marine nematodes. In: Brill E, Backhuys W (Editors), British Chromadorids. A Synopsis of the Free-living Marine Nematodes, LeidenGoogle Scholar
  57. Pringault O, Duran R, Jacquet S, Torreton JP (2008) Temporal variations of microbial activity and diversity in marine tropical sediments (New Caledonia lagoon). Microb Ecol 55:247–258CrossRefGoogle Scholar
  58. Puente A, Juanes JA, Calderón G, Echavarri-Erasun B, García A, García-Castrillo G (2009) Medium-term assessment of the effects of the prestige oil spill on estuarine benthic communities in Cantabria (northern Spain, Bay of Biscay). Mar Pollut Bull 58:487–495CrossRefGoogle Scholar
  59. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160CrossRefGoogle Scholar
  60. Seinhorst J (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4:67–69CrossRefGoogle Scholar
  61. Sepic E, Bricelj M, Leskovsek H (2003) Toxicity of fluoranthene and its biodegradation metabolites to aquatic organisms. Chemosphere 52:1125–1133CrossRefGoogle Scholar
  62. Sharma SS, Schat H, Vooijs R, Van Heerwaarden LM (1999) Combination toxicology of copper, zinc, and cadmium in binary mixtures: concentration-dependent antagonistic, nonadditive, and synergistic effects on root growth in silene vulgaris. Environ Toxicol Chem 18:348–355CrossRefGoogle Scholar
  63. Soclo HH, Garrigues P, Ewald M (2000) Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar Pollut Bull 40:387–396CrossRefGoogle Scholar
  64. Stauffert M, Cravo-Laureau C, Jézéquel R, Barantal S, Cuny P, Gilbert F, Cagnon C, Militon C, Amouroux D, Mahdaoui F, Bouyssiere B, Stora G, Merlin F-X, Duran R (2013) Impact of oil on bacterial community structure in bioturbated sediments. PLoS One 8(6):e65347CrossRefGoogle Scholar
  65. Stauffert M, Duran R, Gassie C, Cravo-Laureau C (2014) Response of archaeal communities to oil spill in bioturbated mudflat sediments. Microb Ecol 67:108–119CrossRefGoogle Scholar
  66. Stringer TJ, Glover CN, Keesing V, Northcott GL, Tremblay LA (2012) Development of a harpacticoid copepod bioassay: selection of species and relative sensitivity to zinc, atrazine and phenanthrene. Ecotoxicol Environ Saf 80:363–371CrossRefGoogle Scholar
  67. Swartz RC, Schults DW, Ozretich RJ, Lamberson JO, Cole FA, Dewitt TH, Redmond MS, Ferraro SP (1995) A model to predict the toxicity of polynuclear aromatic hydrocarbon mixtures in field-collected sediments. Environ Toxicol Chem 14:1977–1987CrossRefGoogle Scholar
  68. Thompson BAW, Goldsworthy PM, Riddle MJ, Snape I, Stark JS (2007) Contamination effects by a ‘conventional’ and a ‘biodegradable’ lubricant oil on infaunal recruitment to antarctic sediments: a field experiment. J Exp Mar Biol Ecol 340:213–226CrossRefGoogle Scholar
  69. Trabelsi S, Driss MR (2005) Polycyclic aromatic hydrocarbons in superficial coastal sediments from Bizerte Lagoon, Tunisia. Mar Pollut Bull 50:344–348CrossRefGoogle Scholar
  70. USEPA (2007) United States Environmental Protection Agency: Test Methods for Evaluation of Solid Waste, SW-846, Method 3550C, Ultrasonic ExtractionGoogle Scholar
  71. Wang H, Wang C, Lin M, Sun X, Wang C, Hu X (2013) Phylogenetic diversity of bacterial communities associated with bioremediation of crude oil in microcosms. Int Biodeterior Biodegrad 85:400–406CrossRefGoogle Scholar
  72. Warwick RM, Clarke KR (1991) A comparison of some methods for analyzing changes in benthic community structure. J Mar Biol Assoc UK 71:225–244CrossRefGoogle Scholar
  73. Warwick RM, Platt HM, Somerfield PJ (1998) Free-living marine nematodes Part III: Monhysterids. Synopses of the British fauna (new series) 53, Shrewsbury: Field studies councilGoogle Scholar
  74. Wieser W (1960) Benthic studies in buzzards Bay. II: the meiofauna. Limnol Oceanogr 5:121–137CrossRefGoogle Scholar
  75. Yoshida M, Hamadi K, Ghrabi A (2002) Solid waste landfills and soil/sediment contamination around Bizerte lagoon: Possible pollution sources. In: Ghrabi A, Yoshida M (Editors), Study on Environmental Pollution of Bizerte Lagoon. INRST-JICA Publishers, pp. 55 pGoogle Scholar
  76. Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hela Louati
    • 1
    • 3
    Email author
  • Olfa Ben Said
    • 1
    • 2
  • Amel Soltani
    • 1
    • 2
  • Cristiana Cravo-Laureau
    • 2
  • Robert Duran
    • 2
  • Patricia Aissa
    • 1
  • Ezzeddine Mahmoudi
    • 1
  • Olivier Pringault
    • 1
    • 3
  1. 1.Laboratoire de Biosurveillance de l’Environnement, Faculté des Sciences de BizerteZarzounaTunisia
  2. 2.Equipe Environnement et Microbiologie—UMR CNRS IPREM 5254, IBEASUniversité de Pau et des Pays de l’AdourPauFrance
  3. 3.Laboratoire Ecosystèmes Marins Côtiers, UMR 5119 CNRS-UM2-IFREMER- IRD-ECOSYMUniversité Montpellier 2MontpellierFrance

Personalised recommendations