Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 1, pp 667–678 | Cite as

Ecotoxicological effects of salicylic acid in the freshwater fish Salmo trutta fario: antioxidant mechanisms and histological alterations

  • B. Nunes
  • J. C. Campos
  • R. Gomes
  • M. R. Braga
  • A. S. Ramos
  • S. C. Antunes
  • A. T. Correia
Research Article

Abstract

The presence of pharmaceutical drugs in aquatic ecosystems has been widely reported during the past years. Salicylic acid (SA) is mainly used in human medicine as an analgesic and antipyretic drug, being also active in preventing platelet aggregation. To study the ecotoxicological effects potentially elicited by SA in freshwater fish, brown trout individuals (Salmo trutta fario) were chronically exposed (28 days) to this drug, in order to evaluate the enzymatic and histological effects, in both gills and liver. A qualitative and semi-qualitative evaluation of the gills and liver was performed, and also a quantitative evaluation of various lamellar structures. Oxidative stress was quantified trough the determination of glutathione S-transferases (GSTs), glutathione reductase (GRed), total and selenium-dependent glutathione peroxidase (GPx) and Catalase (Cat) activities. Lipid peroxidative damage was also assessed by the quantification of thiobarbituric acid reactive substances (TBARS) in the liver. The here-obtained data showed the occurrence of oxidative stress, reflected by an increased activity of GPx and GRed in the liver; additionally, it was possible to observe non-specific histological changes in gills. The global significance of the entire set of results is discussed, giving emphasis to the ecological relevance of the responses.

Keywords

Pharmaceutical drugs Salicylates Oxidative stress Histology Freshwater fish Lipid peroxidation Rainbow trout Chronic toxicity 

Notes

Acknowledgements

This research was supported by the European Regional Development Fund (ERDF) through the COMPETE — Operational Competitiveness Program and by national funds through FCT – Foundation for Science and Technology, under the projects PEst-C/MAR/LA0015/2013 and PTDC/AMB/70431/2006.

References

  1. Aebi H (1984) Catalase in vitro. Method Enzymol 6:105–121Google Scholar
  2. Alazemi BM, Lewis JW, Andrews EB (1996) Gill damage in the fresh water fish Gnathonemus petersii (Family: Mormyridae) exposed to selected pollutants: an ultrastructural study. Environ Technol 17(3):225–238CrossRefGoogle Scholar
  3. Antunes A, Ferrand N, Alexandrino P (2000) A highly polymorphic plasma protein locus in brown trout (Salmo trutta L.) populations from Portugal. Biochem Genet 38(7–8):217–226CrossRefGoogle Scholar
  4. Antunes SC, Marques SM, Pereira R, Gonçalves F, Nunes B (2010) Testing procedures for the determination of several biomarkers in different species, for environmental assessment of pollution. J Environ Monitor 12(8):1625–1630CrossRefGoogle Scholar
  5. Arnott JA, Planey SL (2012) The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov 7(10):863–875CrossRefGoogle Scholar
  6. Arthur JR (2000) The glutathione peroxidases. Cell Mol Life Sci 57(13–14):1825–1835Google Scholar
  7. Authman MMN, Ibrahim SA, El-Kasheif MA, Gaber HS (2013) Heavy metals Ppollution and their effects on gills and liver of the Nile catfish inhabiting El-Rahawy Drain, Egypt. Global Vet 10(2):103–115Google Scholar
  8. Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) Groundwater. Sci Total Environ 402(2–3):192–200CrossRefGoogle Scholar
  9. Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol 43(3):597–603CrossRefGoogle Scholar
  10. Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 22:25–34CrossRefGoogle Scholar
  11. Besse J-P, Garric J (2008) Human pharmaceuticals in surface waters Implementation of a prioritization methodology and application to the French situation. Toxicol Lett 176:104–123CrossRefGoogle Scholar
  12. Bradford M (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254Google Scholar
  13. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Method Enzymol 52:302–310CrossRefGoogle Scholar
  14. Carlberg I, Mannervik B (1985) Glutathione reductase. Method Enzymol 113:484–490CrossRefGoogle Scholar
  15. Carrola J, Fontaínhas-Fernandes A, Matos P, Rocha E (2009) Liver histopathology in brown trout (Salmo trutta f. fario) from the Tinhela river, subjected to mine drainage from the abandoned Jales mine (Portugal). B Environ Contam Toxicol 83(1):35–41CrossRefGoogle Scholar
  16. Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142(3):185–194CrossRefGoogle Scholar
  17. Contardo-Jara V, Lorenza C, Pflugmacher S, Nützmann G, Kloas W, Wiegand C (2011) Exposure to human pharmaceuticals Carbamazepine, Ibuprofen and Bezafibrate causes molecular effects in Dreissena polymorpha. Aquat Toxicol 105(3–4):428–437CrossRefGoogle Scholar
  18. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle changes? Environ Health Perspect 107(6):907–938CrossRefGoogle Scholar
  19. Davison C (1971) Salicylate metabolism in man. Ann NY Acad Sci 179:249–268CrossRefGoogle Scholar
  20. Doi H, Horie T (2010) Salicylic acid-induced hepatotoxicity triggered by oxidative stress. Chem-Biol Interact 183(3):363–368CrossRefGoogle Scholar
  21. Doi H, Iwasaki H, Masubuchi Y, Nishigaki R, Horie T (2002) Chemiluminescence associated with the oxidative metabolism of salicylic acid in rat liver microsomes. Chem-Biol Interact 140(2):109–119CrossRefGoogle Scholar
  22. El-Bassat RA, Touliabah HE, Harisa GI (2012) Toxicity of four pharmaceuticals from different classes to isolated plankton species. Afr J Aquat Sci 37(1):71–80CrossRefGoogle Scholar
  23. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76(2):122–159CrossRefGoogle Scholar
  24. Fernandes MN, Mazon AF (2003) Environmental pollution and fish gill morphology. In: Val AL, Kapoor BG (eds) Fish adaptations. Science Publishers, Enfield, pp 203–231Google Scholar
  25. Fischer-Scherl T, Hoffman RW (1988) Gill morphology of native brown trout Salmo trutta m. fario experiencing acute and chronic acidification of a brook in Bavaria, FRG. Dis Aquatic Organ 4:43–51CrossRefGoogle Scholar
  26. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Method Enzymol 105:114–121CrossRefGoogle Scholar
  27. Focazio MJ, Kolpin DW, Barnes KK, Furlong ET, Meyer MT, Zaugg SD, Barber LB, Thurman ME (2008) A national reconnaissance for pharmaceutical sand other organic wastewater contaminants in the United States—II. Untreated drinking water sources. Sci Total Environ 402(2–3):201–216CrossRefGoogle Scholar
  28. Gagné F, Blaise C, André C (2006) Occurrence of pharmaceutical products in a municipal effluent and toxicity to rainbow trout (Oncorhynchus mykiss) hepatocytes. Ecotoxicol Environ Safe 64:329–336CrossRefGoogle Scholar
  29. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases—the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139Google Scholar
  30. Halling-Sorensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lutzhoft HC, Jorgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36(2):357–393CrossRefGoogle Scholar
  31. Hawkins WE, Overstreet RM, Provancha MJ (1984) Effects of space shuttle exhaust plumes on gills of some estuarine fishes: a light and electron microscopic study. Harold W. Manter Lab Parasitol 7:297–309Google Scholar
  32. Hinton DE, Segner H, Au DWT, Kullman SW, Hardman RC (2008) Liver toxicity (Chapter VII). In: DiGiulio RT, Hinton DE (eds) The toxicology of fishes. CRC Press, Boca Raton, Florida, USAGoogle Scholar
  33. Hughes CM (1984) General anatomy of the gills. In: Hoar RDJ, Marshal WS (eds) Fish physiology. Academic Press, New York, pp 1–72Google Scholar
  34. Hughes GM, Perry SF (1976) Morphometric study of trout gills: a light-microscope method suitable for the evaluation of pollutant action. J Exp Biol 64:447–460Google Scholar
  35. Huschek G, Hansen PD, Maurer HH, Krengel D, Kayser A (2004) Environmental risk assessment of medicinal products for human use according to European Commission recommendations. Environ Toxicol 19(3):226–240CrossRefGoogle Scholar
  36. Imayama S, Ueda S, Isoda M (2000) Histologic changes in the skin of hairless mice following peeling with salicylic acid. Arch Dermatol 136(11):1390–1395CrossRefGoogle Scholar
  37. Isidori M, Lavorgna M, Nardelli A, Parrella A, Previtera L, Rubino M (2005) Ecotoxicity of naproxen and its phototransformation products. Sci Total Environ 348(1–3):93–101CrossRefGoogle Scholar
  38. Jagoe CH, Haines TA (1983) Alterations in gill epithelial morphology of yearling Sunapee trout exposed to acute acid stress. Trans Am Fish Soc 112:689–695CrossRefGoogle Scholar
  39. Johnson AC, Williams RJ, Matthiessen P (2006) The potential steroid hormone contribution of farm animals to freshwaters, the United Kingdom as a case study. Sci Total Environ 362(1–3):166–178CrossRefGoogle Scholar
  40. Kim Y, Choi K, Jung J, Park S, Kim P, Park GJ (2007) Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ Int 33(3):275–370CrossRefGoogle Scholar
  41. Larsson DGJ, Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148(3):751–755CrossRefGoogle Scholar
  42. Lin AY-C, Tsai Y-T (2009) Occurrence of pharmaceuticals in Taiwan’s surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Sci Total Environ 407(12):3793–3802CrossRefGoogle Scholar
  43. Mallatt J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 42(4):630–648CrossRefGoogle Scholar
  44. Meland S, Farmen E, Heier LS, Rosseland BO, Salbu B, Song Y, Tollefsen KE (2011) Hepatic gene expression profile in brown trout (Salmo trutta) exposed to traffic related contaminants. Science Total Environ 409(8):1430–1443CrossRefGoogle Scholar
  45. Moldovan Z (2006) Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania. Chemosphere 64(11):1808–1817CrossRefGoogle Scholar
  46. Moon TW, Walsh PJ, Mommsen TP (1985) Fish hepatocytes: a model metabolic system. Can J Fish Aquat Sci 42(11):1772–1782CrossRefGoogle Scholar
  47. Nero V, Farwell A, Lee LEJ, Van Meer T, MacKinnon MD, Dixon DG (2006) The effects of salinity on naphthenic acid toxicity to yellow perch: Gill and liver histopathology. Ecotoxicol Environ Safe 65(2):252–264CrossRefGoogle Scholar
  48. Norambuena F, Mackenzie S, Bell JG, Callol A, Estévez A, Duncan N (2012) Prostaglandin (F and E, 2- and 3-series) production and cyclooxygenase (COX-2) gene expression of wild and cultured broodstock of Senegalese sole (Solea senegalensis). Gen Comp Endocrinol 177(2):256–262CrossRefGoogle Scholar
  49. OECD (1992) OECD Guideline for testing of chemicals: Fish, Short-term Toxicity Test on Embryo and Sac-fry StagesGoogle Scholar
  50. Osman A, Reheem A, AbuelFadl K, Rab A (2010) Enzymatic and histopathologic biomarkers as indicators of aquatic pollution in fishes. Nat Sci 2:1302–1311Google Scholar
  51. Pamplona JH, Oba ET, da Silva TA, Ramos LP, Ramsdorf WA, Cestari MM, Oliveira Ribeiro CA, Zampronio AR, Silva de Assis HC (2011) Subchronic effects of dipyrone on the fish species Rhamdia quelen. Ecotoxicol Environ Safe 74(3):342–349CrossRefGoogle Scholar
  52. Poleksic V, Mitrovic-Tutundzic V (1994) Fish gills as a monitor of sublethal and chronic effects of pollution. In: Müller R, Lloyd R (eds) Sublethal and chronic effects of pollutants on freshwater fish. Fishing News Books, OxfordGoogle Scholar
  53. Pomati F, Netting AG, Calamari D, Neilan BA (2004) Effects of erythromycin, tetraycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquat Toxicol 67(4):387–396CrossRefGoogle Scholar
  54. Quinn B, Schmidt W, O’Rourke K, Hernan R (2011) Effects of the pharmaceuticals gemfibrozil and diclofenac on biomarker expression in the zebra mussel (Dreissena polymorpha) and their comparison with standardised toxicity tests. Chemosphere 84:657–663CrossRefGoogle Scholar
  55. Rendon MI, Berson DS, Cohen JL, Roberts WE, Starker I, Wang B (2010) Evidence and considerations in the application of chemical peels in skin disorders and aesthetic resurfacing. J Clin Aesthet Dermatol 3(7):32–43Google Scholar
  56. Rocha E, Monteiro RAF, Pereira CA (1995) Microanatomical organization of the hepatic stroma of the brown trout, Salmo trutta fario (Teleostei, Salmonidae): a qualitative and quantitative approach. J Morphol 223:1–11CrossRefGoogle Scholar
  57. Rosety-Rodríguez M, Ordoñez FJ, Rosety M, Rosety JM, Ribelles A, Carrasco C (2002) Morpho-histochemical changes in the gills of turbot, Scophthalmus maximus L., induced by sodium dodecyl sulfate. Ecotoxicol Environ Safe 51 (3): 223–228Google Scholar
  58. Sacher F, Lange FT, Brauch H-J, Blankenhorn I (2001) Pharmaceuticals in groundwaters. Analytical methods and results of a monitoring program in Baden-Württemberg, Germany. J Chromatogr A 938(1–2):199–210CrossRefGoogle Scholar
  59. SanJuan-Reyes N, Gómez-Oliván LM, Galar-Martínez M, Vieyra-Reyes P, García-Medina S, Islas-Flores H, Neri-Cruz N (2013) Effluent from an NSAID-manufacturing plant in Mexico induces oxidative stress on Cyprinus carpio. Water Air Soil Pollut 224:1689CrossRefGoogle Scholar
  60. Sayed H-A. H.M (2013) Some Morphological Studies on the Respiratory System of Tilapia nilotica (Oreochromus niloticus) and African catfish (Clarias gariepinus). ThesisGoogle Scholar
  61. Schmidt W, O’Rourke K, Hernan R, Quinn B (2011) Effects of the pharmaceuticals gemfibrozil and diclofenac on the marine mussel (Mytilus spp.) and their comparison with standardized toxicity tests. Mar Pollut Bull 62(7):1389–1395CrossRefGoogle Scholar
  62. Schomburg D, Salzmann M (1991) Enzyme handbook. Springer-Verlag, BerlinCrossRefGoogle Scholar
  63. Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I. Histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68:141–150CrossRefGoogle Scholar
  64. Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK, Reissman DB (2004) Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci Total Environ 329(1–3):99–113CrossRefGoogle Scholar
  65. Stevens ED (1992) Gill morphometry of the red drum, Sciaenops ocellatus. Fish Physiol Biochem 10(2):169–176CrossRefGoogle Scholar
  66. Temmink JHM, Bouwmeister PJ, de Jong P, van den Berg JHJ (1983) An ultrastructural study of chromate induced hyperplasia in the gills of rainbow trout (Salmo gairdneri). Aquat Toxicol 4:165–179CrossRefGoogle Scholar
  67. Tietge J, Johnson R, Bergman H (1988) Morphometric changes in gill secondary lamellae of brook trout (Salvelinus fontinalis) after long-term exposure to acid and aluminum. Can J Aquat Sci 45:1643–1648CrossRefGoogle Scholar
  68. Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler H-R, Schwaiger J (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 68(2):151–166CrossRefGoogle Scholar
  69. Ugurlucan M, Cagçar MI, Turhan FN, Ziyade S, Karatepe Yildiz Y, Zencirci E, Ugurlucan FG, Arslan HA, Korkmaz S, Filizcan U, Cicek S (2012) Aspirin: from a historical perspective. Rec Pat Cardiovasc Drug Disc 7:71–76CrossRefGoogle Scholar
  70. van Anholt RD, Spanings T, Koven W, Wendelaar BSE (2003) Effects of acetylsalicylic acid treatment on thyroid hormones, prolactins, and the stress response of tilapia (Oreochromis mossambicus). Am J Physiol Regul Integr Comp Physiol 285(5):R1098–106Google Scholar
  71. Vane JR, Botting RM (1998) Mechanism of action of antiinflammatory drugs. Int J Tissue React 20(1):3–15Google Scholar
  72. Velisek J, Svobodova Z, Piackova V (2009) Effects of acute exposure to bifenthrin on some haematological, biochemical and histopathological parameters of rainbow trout (Oncorhynchus mykiss). Vet Med-Czech 54(3):131–137Google Scholar
  73. Warner TD, Mitchell JA (2002) Cyclooxygenase-3 (COX-3): filling in the gaps toward COX continuum? Proc Natl Acad Sci J 99(21):13371–13373CrossRefGoogle Scholar
  74. Weigel S, Kuhlmann J, Hühnerfuss H (2002) Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea. Sci Total Environ 295(1–3):131–141CrossRefGoogle Scholar
  75. Weiss S, Antunes A, Schlötterer C, Alexandrino P (2000) Mitochondrial haplotype diversity among Portuguese brown trout Salmo trutta L. populations: relevance to the post-Pleistocene recolonization of northern Europe. Mol Ecol 9(6):691–698CrossRefGoogle Scholar
  76. Wilson JM, Bunte RM, Anthony J, Carty AJ (2009) Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio). J Am Assoc Lab An Sci 48(6):785–789Google Scholar
  77. Winston GW, Di Giulio RT (1991) Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19(2):137–161CrossRefGoogle Scholar
  78. Yasser AG, Naser MD (2011) Impact of pollutants on fish collected from different parts of Shatt Al-Arab River: a histopathological study. Environ Monitor Assess 181(1–4):175–182CrossRefGoogle Scholar
  79. Zou J, Neumann NF, Holland JW, Belosevic M, Cunningham C, Secombes CJ, Rowley AF (1999) Fish macrophages express a cyclo-oxygenase-2 homologue after activation. Biochem J 340:153–159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • B. Nunes
    • 1
  • J. C. Campos
    • 2
  • R. Gomes
    • 2
  • M. R. Braga
    • 2
  • A. S. Ramos
    • 3
  • S. C. Antunes
    • 1
    • 3
  • A. T. Correia
    • 2
    • 4
  1. 1.Centro de Estudos do Ambiente e do MarUniversidade de AveiroAveiroPortugal
  2. 2.Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (UFP)PortoPortugal
  3. 3.Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPortoPortugal
  4. 4.Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR–CIMAR)PortoPortugal

Personalised recommendations