Advertisement

Environmental Science and Pollution Research

, Volume 21, Issue 23, pp 13446–13451 | Cite as

Ant cuticular response to phthalate pollution

  • Alain Lenoir
  • Axel Touchard
  • Séverine Devers
  • Jean-Philippe Christidès
  • Raphaël Boulay
  • Virginie Cuvillier-Hot
Research Article

Abstract

Phthalates are common atmospheric contaminants used in the plastic industry. Ants have been shown to constitute good bioindicators of phthalate pollution. Hence, phthalates remain trapped on ant cuticles which are mostly coated with long-chain hydrocarbons. In this study, we artificially contaminated Lasius niger ants with four phthalates: dibutyl phthalate (DBP), diisobutyl phthalate (DiBP), di(2-ethylhexyl) phthalate (DEHP), and benzyl butyl phthalate (BBP). The first three have previously been found on ants in nature in Touraine (France), while the fourth has not. The four phthalates disappeared rapidly (less than 5 days) from the cuticles of live ants. In contrast, on the cuticles of dead ants, DEHP quantities remained unchanged over time. These results indicate that phthalates are actively absorbed by the cuticles of live ants. Cuticular absorption of phthalates is nonspecific because eicosane, a nonnatural hydrocarbon on L. niger cuticle, was similarly absorbed. Ants are important ecological engineers and may serve as bioindicators of ecosystem health. We also suggest that ants and more generally terrestrial arthropods may contribute to the removal of phthalates from the local environment.

Keywords

Ants Phthalates DEHP DBP DiBP BBP Cuticle Pollutants Bioindicator Absorption 

Notes

Acknowledgments

We thank Guy Bourdais, who helped with the rearing of the ants. Frédéric Montigny provided some of the phthalates and verified the absence of phthalates in polystyrene boxes. Jessica Pearce corrected the English. Thanks to a reviewer who helped to clarify and improve the text.

References

  1. Abril S, Gómez C (2013) Rapid assessment of ant assemblages in public pine forests of the central Iberian Peninsula. For Ecol Manag 293:79–84CrossRefGoogle Scholar
  2. Albro PW, Corbett JT, Schroeder JL (1993) The metabolism of di-(2-ethylhexyl) phthalate in the earthworm Lumbricus terrestris. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 104:335–344CrossRefGoogle Scholar
  3. Bagnères AG, Blomquist GJ (2010) Site of synthesis, mechanism of transport and selective deposition of hydrocarbons. In: G. J. Blomquist and A. G. Bagnères (Eds), Insect hydrocarbons. Biology, biochemistry, and chemical ecology. Cambridge University Press, pp 7599Google Scholar
  4. Blanchard M, Teil M-J, Dargnat C, Alliot F, Chevreuil M (2013) Assessment of adult human exposure to phthalate esters in the Urban Centre of Paris (France). Bull Environ Contam Toxicol 90:91–96CrossRefGoogle Scholar
  5. Bono-Blay F, Guart A, de la Fuente B, Pedemonte M, Pastor MC, Borrell A, Lacorte S (2012) Survey of phthalates, alkylphenols, bisphenol A and herbicides in Spanish source waters intended for bottling. Environ Sci Pollut Res 19:3339–3349CrossRefGoogle Scholar
  6. Cecinato A, Balducci C, Mastroianni D, Perilli M (2012) Sampling and analytical methods for assessing the levels of organic pollutants in the atmosphere: PAH, phthalates and psychotropic substances: a short review. Environ Sci Pollut Res 19:1915–1926CrossRefGoogle Scholar
  7. Chen L, Zhao Y, Li L, Chen B, Zhang Y (2012) Exposure assessment of phthalates in non-occupational populations in China. Sci Total Environ 427–8:60–69CrossRefGoogle Scholar
  8. Colborn T (1998) Endocrine disruption from environmental toxicants. In: Rom WN (ed) Environmental and occupational medecine. Lippincott-Raven, Philadelphia, pp 807–816Google Scholar
  9. Cuvillier-Hot V, Salin K, Devers S, Tasiemski A, Schaffner P, Boulay R, Billiard S, Lenoir A (2014) Impact of ecological doses of the most widespread phthalate on a terrestrial species, the ant Lasius niger. 131:104–110Google Scholar
  10. El Haddad I, Marchand N, Dron J, Temime-Roussel B, Quivet E, Wortham H, Jaffrezo JL, Baduel C, Voisin D, Besombes JL, Gille G (2009) Comprehensive primary particulate organic characterization of vehicular exhaust emissions in France. Atmos Environ 43:6190–6198CrossRefGoogle Scholar
  11. European Environment Agency E E A (2012) The impacts of endocrine disrupters on wildlife, people and their environments Luxembourg: publications of the European UnionGoogle Scholar
  12. Gaudin R, Marsan P, Ndaw S, Robert A, Ducos P (2011) Biological monitoring of exposure to di(2-ethylhexyl) phthalate in six French factories: a field study. Int Arch Occup Environ Health 84:523–531CrossRefGoogle Scholar
  13. Gaylor MO, Harvey E, Hale RC (2012) House crickets can accumulate polybrominated diphenyl ethers (PBDEs) directly from polyurethane foam common in consumer products. Chemosphere 86:500–505CrossRefGoogle Scholar
  14. Gramigni E, Calusi S, Gelli N, Giuntini L, Massi M, Delfino G, Chelazzi G, Baracchi D, Frizzi F, Santini G (2013) Ants as bioaccumulators of metals from soils: Body content and tissue-specific distribution of metals in the ant Crematogaster scutellaris. Eur J Soil Biol, in pressGoogle Scholar
  15. Hale RC, La Guardia MJ, Harvey E, Matt Mainor T (2002) Potential role of fire retardant-treated polyurethane foam as a source of brominated diphenyl ethers to the US environment. Chemosphere 46:729–735CrossRefGoogle Scholar
  16. Heudorf U, Mersch-Sundermann V, Angerer E (2007) Phthalates: toxicology and exposure. Int J Hyg Environ Health 210:623–634CrossRefGoogle Scholar
  17. Hu X-y, Wen B, Zhang S, X-q S (2005) Bioavailability of phthalate congeners to earthworms (Eisenia fetida) in artificially contaminated soils. Ecotoxicol Environ Saf 62:26–34CrossRefGoogle Scholar
  18. Jen J-F, Liu T-C (2006) Determination of phthalate esters from food-contacted materials by on-line microdialysis and liquid chromatography. J Chrom A 1130:28–33CrossRefGoogle Scholar
  19. Jensen J, van Langevelde J, Pritzl G, Krogh PH (2001) Effects of di(2-ethylhexyl) phthalate and dibutyl phthalate on the collembolan Folsomia fimetaria. Environ Toxicol Chem 20:1085–1091CrossRefGoogle Scholar
  20. Keyser P, Pujar BG, Eaton RW, Ribbons DW (1976) Biodegradation of phthalates and their esters by bacteria. Environ Health Perspect 18:159–166CrossRefGoogle Scholar
  21. Koch HM, Calafat AM (2009) Human body burdens of chemicals used in plastic manufacture. Philos Trans R Soc B Biol Sci 364:2063–2078Google Scholar
  22. Lenoir A, Fresneau D, Errard C, Hefetz A (1999) The individuality and the colonial identity in ants: the emergence of the social representation concept. In: Detrain C, Deneubourg JL, Pasteels J (eds) Information processing in social insects. Birkhäuser Verlag, Basel, pp 219–237CrossRefGoogle Scholar
  23. Lenoir A, Depickère S, Devers S, Christidès J-P, Detrain C (2009) Hydrocarbons in the ant Lasius niger: from the cuticle to the nest and home range marking. J Chem Ecol 35:913–921CrossRefGoogle Scholar
  24. Lenoir A, Cuvillier-Hot V, Devers S, Christidès J-P, Montigny F (2012) Ant cuticles: a trap for atmospheric phthalate contaminants. Sci Total Environ 441:209–212CrossRefGoogle Scholar
  25. Liang DW, Zhang T, Fang HHP, He JZ (2008) Phthalates biodegradation in the environment. Appl Microbiol Biotechnol 80:183–198CrossRefGoogle Scholar
  26. Majer JD (2009) Animals in the restoration process-progressing the trends. Restor Ecol 17:315–319CrossRefGoogle Scholar
  27. Marlier JF, Quinet Y, de Biseau JC (2004) Defensive behaviour and biological activities of the abdominal secretion in the ant Crematogaster scutellaris (Hymenoptera:Myrmicinae). Behav Process 67:427–440CrossRefGoogle Scholar
  28. Meskali M, Bonavita-Cougourdan A, Provost E, Bagnères A-G, Dusticier G, Clément J-L (1995) Mechanism underlying cuticular hydrocarbon homogeneity in the ant Camponotus vagus (Scop.) (Hymenoptera:Formicidae): role of postpharyngeal glands. J Chem Ecol 21:1127–1148CrossRefGoogle Scholar
  29. Migula P, Nuorteva P, Nuorteva S L, Glowacka E, Oja A (1993) Physiological disturbances in ants (Formica aquilonia) from excess of cadmium and mercury in a Finnish forest. 134(Supplement 2):1305–1314Google Scholar
  30. Oehlmann J, Schulte-Oehlmann U, Kloas W, Jagnytsch O, Lutz I, Kusk KO, Wollenberger L, Santos EM, Paull GC, Van Look KJW, Tyler CR (2009) A critical analysis of the biological impacts of plasticizers on wildlife. Philos Trans R Soc B Biol Sci 364:2047–2062CrossRefGoogle Scholar
  31. Olujimi OO, Fatoki OS, Odendaal JP, Okonkwo JO (2010) Endocrine disrupting chemicals (phenols and phthalates) in the South African environment: a need for more monitoring. Water SA 36:671–682CrossRefGoogle Scholar
  32. Ran D, Cai S, Wu H, Gu H (2012) Di (2-ethylhexyl) phthalate modulates cholinergic mini-presynaptic transmission of projection neurons in Drosophila antennal lobe. 50:3291–3297Google Scholar
  33. Semenova TA, Belozerskii MA, Belyakova GA, Borisov BA, Semenova SA, Dunaevskii YE (2011) Secreted protease of the entomopathogenic fungus Cordyceps militaris. II. Enzyme properties and adsorption on the insect cuticle. Microbiology 80:889–892CrossRefGoogle Scholar
  34. Sioen I, Fierens T, Van Holderbeke M, Geerts L, Bellemans M, De Maeyer M, Servaes K, Vanermen G, Boon PE, De Henauw S (2012) Phthalates dietary exposure and food sources for Belgian preschool children and adults. Environ Int 48:102–108CrossRefGoogle Scholar
  35. Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a litterature review. Chemosphere 35:667–749CrossRefGoogle Scholar
  36. Teil MJ, Blanchard M, Chevreuil M (2006) Atmospheric fate of phthalate esters in an urban area (Paris-France). Sci Total Environ 354:212–223CrossRefGoogle Scholar
  37. Teil MJ, Tlili K, Blanchard M, Chevreuil M, Alliot F, Labadie P (2012) Occurrence of polybrominated diphenyl ethers, polychlorinated biphenyls, and phthalates in freshwater fish from the Orge River (Ile-de France). Arch Environ Contam Toxicol 63:101–113CrossRefGoogle Scholar
  38. Vauchot B, Provost E, Bagnères A-G, Rivière G, Roux M, Clément J-L (1998) Differential adsorption of allospecific hydrocarbons by cuticles of two termite species, Reticulitermes santonensis and R. lucifugus grassei, living in mixed colony. J Insect Physiol 44:59–66CrossRefGoogle Scholar
  39. Wang WX, Zhang YL, Wang SL, Fan CBQ, Xu H (2012) Distributions of phthalic esters carried by total suspended particulates in Nanjing, China. Environ Monit Assess 184:6789–6798CrossRefGoogle Scholar
  40. Yuan S-Y, Huang IC, Chang B-V (2010) Biodegradation of dibutyl phthalate and di-(2-ethylhexyl) phthalate and microbial community changes in mangrove sediment. J Hazard Mater 184:826–831CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alain Lenoir
    • 1
  • Axel Touchard
    • 1
    • 3
  • Séverine Devers
    • 1
  • Jean-Philippe Christidès
    • 1
  • Raphaël Boulay
    • 1
  • Virginie Cuvillier-Hot
    • 2
  1. 1.IRBI, Institut de Recherche sur la Biologie de l’Insecte, UMR CNRS 7261Université François RabelaisToursFrance
  2. 2.GEPV Laboratoire Génétique Évolution Populations Végétales, CNRS UMR 8198Villeneuve d’Ascq cedexFrance
  3. 3.CNRS, UMR Écologie des Forêts de Guyane (EcoFoG)Kourou CedexFrance

Personalised recommendations