Environmental Science and Pollution Research

, Volume 21, Issue 21, pp 12279–12293 | Cite as

A reactive transport model for mercury fate in soil—application to different anthropogenic pollution sources

  • Bertrand Leterme
  • Philippe Blanc
  • Diederik Jacques
Research Article


Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg2+ to Hg0 was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg2+ with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg2+ sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of contaminated sites are discussed.


Mercury Hg Reactive transport modelling HP1 Geochemical speciation Vadose zone Leaching 



The present study is part of the IMaHg project (Enhanced knowledge in mercury fate and transport for Improved Management of Hg soil contamination), which aims at providing recommendations to improve management of sites contaminated by mercury within the SNOWMAN funding framework. This particular work was done with the financial support of the Public Waste Agency of Flanders (OVAM). Prof. T. Leyssens is acknowledged for his help in improving the manuscript.

Supplementary material

11356_2014_3135_MOESM1_ESM.docx (101 kb)
Online Resource 1 Selection of the Hg species for the Thermoddem database (DOCX 101 kb)
11356_2014_3135_MOESM2_ESM.docx (24 kb)
Online Resource 2 Reactions and exchange constants used in the model but that are not part of the Thermoddem database (DOCX 24.1 kb)


  1. Abdu N, Abdulkadir A, Agbenin JO, Buerkert A (2011) Vertical distribution of heavy metals in wastewater-irrigated vegetable garden soils of three West African cities. Nutr Cycl Agroecosyst 89(3):387–397CrossRefGoogle Scholar
  2. Andrews JC (2006) Mercury speciation in the environment using x-ray absorption spectroscopy. In: Atwood D (ed) Recent developments in mercury science, vol 120. Structure and bonding. Springer Berlin, Heidelberg, pp 1–35. doi: 10.1007/430_011 Google Scholar
  3. Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New YorkGoogle Scholar
  4. Basu NB, Fure AD, Jawitz JW (2008) Simplified contaminant source depletion models as analogs of multiphase simulators. J Contam Hydrol 97(3–4):87–99CrossRefGoogle Scholar
  5. Bernaus A, Gaona X, van Ree D, Valiente M (2006) Determination of mercury in polluted soils surrounding a chlor-alkali plant: direct speciation by X-ray absorption spectroscopy techniques and preliminary geochemical characterisation of the area. Anal Chim Acta 565(1):73–80CrossRefGoogle Scholar
  6. Bessinger B, Apps JA (2005) The hydrothermal chemistry of gold, arsenic, antimony, mercury and silver. Report LBNL-57395, Lawrence Berkeley National Laboratory, USAGoogle Scholar
  7. Bessinger BA, Marks CD (2010) Treatment of mercury-contaminated soils with activated carbon: a laboratory, field, and modeling study. Remediat J 21(1):115–135. doi: 10.1002/rem.20275 CrossRefGoogle Scholar
  8. Bessinger BA, Vlassopoulos D, Serrano S, O’Day PA (2012) Reactive transport modeling of subaqueous sediment caps and implications for the long-term fate of arsenic, mercury, and methylmercury. Aquat Geochem 18(4):297–326. doi: 10.1007/s10498-012-9165-4 CrossRefGoogle Scholar
  9. Biester H, Gosar M, Müller G (1999) Mercury speciation in tailings of the Idrija mercury mine. J Geochem Explor 65(3):195–204CrossRefGoogle Scholar
  10. Biester H, Müller G, Schöler HF (2002) Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci Total Environ 284(1–3):191–203CrossRefGoogle Scholar
  11. Blanc P, Lassin A, Piantone P, Azaroual M, Jacquemet N, Fabbri A, Gaucher EC (2012) Thermoddem: a geochemical database focused on low temperature water/rock interactions and waste materials. Appl Geochem 27(10):2107–2116. doi: 10.1016/j.apgeochem.2012.06.002 CrossRefGoogle Scholar
  12. Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479(2):233–248CrossRefGoogle Scholar
  13. Bollen A, Wenke A, Biester H (2008) Mercury speciation analyses in HgCl2-contaminated soils and groundwater-implications for risk assessment and remediation strategies. Water Res 42(1–2):91–100CrossRefGoogle Scholar
  14. Boszke L, Kowalski A, Astel A, Barański A, Gworek B, Siepak J (2008) Mercury mobility and bioavailability in soil from contaminated area. Environ Geol 55(5):1075–1087. doi: 10.1007/s00254-007-1056-4 CrossRefGoogle Scholar
  15. Brusseau ML, DiFilippo EL, Marble JC, Oostrom M (2008) Mass-removal and mass-flux-reduction behavior for idealized source zones with hydraulically poorly-accessible immiscible liquid. Chemosphere 71(8):1511–1521CrossRefGoogle Scholar
  16. Carpi A, Lindberg SE (1998) Application of a teflon dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil. Atmos Environ 32(5):873–882CrossRefGoogle Scholar
  17. Cox JD, Wagman DD, Medvedev VA (1989) CODATA key values for thermodynamics. Hemisphere Pub. Corp.Google Scholar
  18. Davis A, Bloom NS, Que Hee SS (1997) The environmental geochemistry and bioaccessibility of mercury in soils and sediments: a review. Risk Anal 17(5):557–569. doi: 10.1111/j.1539-6924.1997.tb00897.x CrossRefGoogle Scholar
  19. Don A, Schulze E-D (2008) Controls on fluxes and export of dissolved organic carbon in grasslands with contrasting soil types. Biogeochemistry 91(2):117–131. doi: 10.1007/s10533-008-9263-y CrossRefGoogle Scholar
  20. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47 (10):4967–4983. doi: 10.1021/es305071v CrossRefGoogle Scholar
  21. Eichholz GG, Petelka MF, Kury RL (1988) Migration of elemental mercury through soil from simulated burial sites. Water Res 22 (1):15–20. doi: 10.1016/0043-1354(88)90126-1 CrossRefGoogle Scholar
  22. Futter MN, Poste AE, Butterfield D, Dillon PJ, Whitehead PG, Dastoor AP, Lean DRS (2012) Using the INCA-Hg model of mercury cycling to simulate total and methyl mercury concentrations in forest streams and catchments. Sci Total Environ 424:219–231CrossRefGoogle Scholar
  23. Gabriel M, Williamson D (2004) Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environ Geochem Health 26(3):421–434. doi: 10.1007/s10653-004-1308-0 CrossRefGoogle Scholar
  24. Guédron S, Grangeon S, Jouravel G, Charlet L, Sarret G (2013) Atmospheric mercury incorporation in soils of an area impacted by a chlor-alkali plant (Grenoble, France): contribution of canopy uptake. Sci Total Environ 445–446:356–364. doi: 10.1016/j.scitotenv.2012.12.084 CrossRefGoogle Scholar
  25. Gustafsson JP (1999) WinHumicV For Win95/98/NT. Retrieved from http://www2.lwr.kth.se/English/OurSoftWare/WinHumicV/index.htm
  26. Hylander LD, Meili M (2003) 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Sci Total Environ 304:13–27CrossRefGoogle Scholar
  27. Jacques D, Šimůnek J, Mallants D, Van Genuchten MT (2006) Operator-splitting errors in coupled reactive transport codes for transient variably saturated flow and contaminant transport in layered soil profiles. J Contam Hydrol 88:197–218CrossRefGoogle Scholar
  28. Jacques D, Šimůnek J, Mallants D, van Genuchten MT (2008a) Modeling coupled hydrologic and chemical processes: long-term uranium transport following phosphorus fertilization. Vadose Zone J 7(2):698–711. doi: 10.2136/vzj2007.0084 CrossRefGoogle Scholar
  29. Jacques D, Šimůnek J, Mallants D, Van Genuchten MT (2008b) Modelling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil. Geoderma 145(3–4):449–461CrossRefGoogle Scholar
  30. Jawitz JW, Fure AD, Demmy GG, Berglund S, Rao PSC (2005) Groundwater contaminant flux reduction resulting from nonaqueous phase liquid mass reduction. Water Resour Res 41(10), W10408. doi: 10.1029/2004wr003825 Google Scholar
  31. Johannesson KH, Neumann K (2013) Geochemical cycling of mercury in a deep, confined aquifer: insights from biogeochemical reactive transport modeling. Geochim Cosmochim Acta 106:25–43. doi: 10.1016/j.gca.2012.12.010 CrossRefGoogle Scholar
  32. Kocman D, Horvat M, Pirrone N, Cinnirella S (2013) Contribution of contaminated sites to the global mercury budget. Environ Res. doi: 10.1016/j.envres.2012.12.011 Google Scholar
  33. Kothawala DN, Moore TR, Hendershot WH (2008) Adsorption of dissolved organic carbon to mineral soils: a comparison of four isotherm approaches. Geoderma 148(1):43–50CrossRefGoogle Scholar
  34. Leterme B, Blanc P, Jacques D (2013) Mercury fate and transport in soil systems—conceptual and mathematical model development and sensitivity study. SNOWMAN Network, enhanced knowledge in mercury fate and transport for improved management of Hg soil contaminationGoogle Scholar
  35. Li Y, Yin Y, Liu G, Cai Y (2012) Advances in speciation analysis of mercury in the environment. In: Liu G, Cai Y, O’Driscoll N (eds) Environmental chemistry and toxicology of mercury. Wiley, New York, pp 15–58. doi: 10.1002/9781118146644.ch7 Google Scholar
  36. Liu G, Xue W, Tao L, Liu X, Hou J, Wilton M, Gao D, Wang A, Li R (2014) Vertical distribution and mobility of heavy metals in agricultural soils along Jishui River affected by mining in Jiangxi Province, China. Clean Soil Air Water. doi: 10.1002/clen.201300668 Google Scholar
  37. Mao X, Prommer H, Barry DA, Langevin CD, Panteleit B, Li L (2006) Three-dimensional model for multi-component reactive transport with variable density groundwater flow. Environ Model Softw 21(5):615–628CrossRefGoogle Scholar
  38. Massman WJ (1999) Molecular diffusivities of Hg vapor in air, O2 and N2 near STP and the kinematic viscosity and thermal diffusivity of air near STP. Atmos Environ 33(3):453–457CrossRefGoogle Scholar
  39. Mayer KU, Frind EO, Blowes DW (2002) Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour Res 38(9):1174. doi: 10.1029/2001wr000862 Google Scholar
  40. Millan R, Schmid T, Sierra MJ, Carrasco-Gil S, Villadóniga M, Rico C, Ledesma DMS, Puente FJD (2011) Spatial variation of biological and pedological properties in an area affected by a metallurgical mercury plant: Almadenejos (Spain). Appl Geochem 26(2):174–181CrossRefGoogle Scholar
  41. Millington RJ, Quirk JP (1961) Permeability of porous solids. Trans Faraday Soc 57:1200–1207. doi: 10.1039/tf9615701200 CrossRefGoogle Scholar
  42. Navarro A, Biester H, Mendoza JL, Cardellach E (2006) Mercury speciation and mobilization in contaminated soils of the Valle del Azogue Hg mine (SE, Spain). Environ Geol 49(8):1089–1101. doi: 10.1007/s00254-005-0152-6 CrossRefGoogle Scholar
  43. Navarro-Flores A, Martínez-Frías J, Font X, Viladevall M (2000) Modelling of modern mercury vapor transport in an ancient hydrothermal system: environmental and geochemical implications. Appl Geochem 15 (3):281–294. doi: 10.1016/S0883-2927(99)00046-3 CrossRefGoogle Scholar
  44. Ottesen RT, Birke M, Finne TE, Gosar M, Locutura J, Reimann C, Tarvainen T (2013) Mercury in European agricultural and grazing land soils. Appl Geochem. doi: 10.1016/j.apgeochem.2012.12.013 Google Scholar
  45. Pant P, Allen M, Tansel B (2010) Mercury uptake and translocation in Impatiens walleriana plants grown in the contaminated soil from oak ridge. Int J Phytoremediat 13(2):168–176. doi: 10.1080/15226510903567489 CrossRefGoogle Scholar
  46. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Vol Water-resources investigations report 99–4259. U.S. Department of the Interior, U.S. Geological Survey, Denver, Colorado, USAGoogle Scholar
  47. Parkhurst DL, Kipp KL, Charlton SR (2010) PHAST version 2—a program for simulating groundwater flow, solute transport, and multicomponent geochemical reactions. U.S. Geological Survey Techniques and Methods 6-A35Google Scholar
  48. Pérez-Sanz A, Millán R, Sierra MJ, Alarcín R, García P, Gil-Díaz M, Vazquez S, Lobo MC (2012) Mercury uptake by Silene vulgaris grown on contaminated spiked soils. J Environ Manag 95(Supplement):S233–S237. doi: 10.1016/j.jenvman.2010.07.018 CrossRefGoogle Scholar
  49. Powell KJ, Brown PL, Byrne RH, Gajda TS, Hefter G, Sjöberg S, Wanner H (2005) Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: the Hg2+−Cl–, OH–, CO32–, SO42–, and PO43– aqueous systems (IUPAC Technical Report). Pure Appl Chem 77(4):739–800. doi: 10.1351/pac200577040739 CrossRefGoogle Scholar
  50. Prommer H, Barry DA, Zheng C (2003) Modflow/Mt3dms-based reactive multicomponent transport modeling. Ground Water 41(2):247–257. doi: 10.1111/j.1745-6584.2003.tb02588.x CrossRefGoogle Scholar
  51. Ravichandran M (2004) Interactions between mercury and dissolved organic matter: a review. Chemosphere 55(3):319–331CrossRefGoogle Scholar
  52. Renneberg AJ, Dudas MJ (2001) Transformations of elemental mercury to inorganic and organic forms in mercury and hydrocarbon co-contaminated soils. Chemosphere 45(6–7):1103–1109CrossRefGoogle Scholar
  53. Rinklebe J, During A, Overesch M, Du Laing G, Wennrich R, Stärk H-J, Mothes S (2010) Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas. Environ Pollut 158(1):308–318CrossRefGoogle Scholar
  54. Santoro A, Terzano R, Blo G, Fiore S, Mangold S, Ruggiero P (2010) Mercury speciation in the colloidal fraction of a soil polluted by a chlor-alkali plant: a case study in the South of Italy. J Synchrotron Radiat 17 (2):187–192. doi: 10.1107/S0909049510002001 CrossRefGoogle Scholar
  55. Schlüter K (2000) Review: evaporation of mercury from soils. An integration and synthesis of current knowledge. Environ Geol 39(3):249–271. doi: 10.1007/s002540050005 CrossRefGoogle Scholar
  56. Scholtz MT, Van Heyst BJ, Schroeder WH (2003) Modelling of mercury emissions from background soils. Sci Total Environ 304(1–3):185–207CrossRefGoogle Scholar
  57. Schuster E (1991) The behavior of mercury in the soil with special emphasis on complexation and adsorption processes—a review of the literature. Water Air Soil Pollut 56:667–680CrossRefGoogle Scholar
  58. Sen TK, Khilar KC (2006) Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv Colloid Interf Sci 119(2–3):71–96Google Scholar
  59. Shaw SA, Al TA, MacQuarrie KTB (2006) Mercury mobility in unsaturated gold mine tailings, Murray Brook mine, New Brunswick, Canada. Appl Geochem 21(11):1986–1998CrossRefGoogle Scholar
  60. Šimůnek J, Šejna M, Saito H, Sakai M, van Genuchten MT (2008) The Hydrus-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, version 4.0. Vol HYDRUS software series 3. Department of Environmental Sciences, University of California Riverside, Riverside, California, USAGoogle Scholar
  61. Šimůnek J, He C, Pang L, Bradford SA (2006) Colloid-facilitated solute transport in variably saturated porous media. Vadose Zone J 5(3):1035–1047. doi: 10.2136/vzj2005.0151 CrossRefGoogle Scholar
  62. Skyllberg U (2008) Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: illumination of controversies and implications for MeHg net production. J Geophys Res 113:G00C03. doi: 10.1029/2008jg000745 Google Scholar
  63. Skyllberg U (2010) Mercury biogeochemistry in soils and sediments. Dev Soil Sci 34Google Scholar
  64. Skyllberg U (2012) Chemical speciation of mercury in soil and sediment. In: Environmental chemistry and toxicology of mercury. Wiley, pp 219–258. doi: 10.1002/9781118146644.ch7
  65. Skyllberg U, Qian J, Frech W, Xia K, Bleam WF (2003) Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry 64(1):53–76. doi: 10.1023/a:1024904502633 CrossRefGoogle Scholar
  66. Slowey AJ, Rytuba JJ, Brown GE (2005) Speciation of mercury and mode of transport from placer gold mine tailings. Environ Sci Technol 39(6):1547–1554. doi: 10.1021/es049113z CrossRefGoogle Scholar
  67. Steefel CI (2009) CrunchFlow—software for modeling multicomponent reactive flow and transport. User’s manual. Lawrence Berkeley National LaboratoryGoogle Scholar
  68. Steefel CI, DePaolo DJ, Lichtner PC (2005) Reactive transport modeling: an essential tool and a new research approach for the Earth sciences. Earth Planet Sci Lett 240((3–4)):539–558. doi: 10.1016/j.epsl.2005.09.017 CrossRefGoogle Scholar
  69. Stolk AP (2001) Landelijk Meetnet Regenwatersamenstelling - Meetresultaten 1999. Dutch national precipitation chemistry network. Monitoring results for 1999. Rijksinstituut voor Volksgezondheid en Milieu RIVMGoogle Scholar
  70. Tipping E, Wadsworth RA, Norris DA, Hall JR, Ilyin I (2011) Long-term mercury dynamics in UK soils. Environ Pollut 159(12):3474–3483CrossRefGoogle Scholar
  71. Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31(3):241–293. doi: 10.1080/20016491089226 CrossRefGoogle Scholar
  72. UNEP (2002) Global mercury assessment. Geneva, SwitzerlandGoogle Scholar
  73. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  74. Walvoord MA, Andraski BJ, Krabbenhoft DP, Striegl RG (2008) Transport of elemental mercury in the unsaturated zone from a waste disposal site in an arid region. Appl Geochem 23(3):572–583CrossRefGoogle Scholar
  75. Waples JS, Nagy KL, Aiken GR, Ryan JN (2005) Dissolution of cinnabar (HgS) in the presence of natural organic matter. Geochim Cosmochim Acta 69(6):1575–1588CrossRefGoogle Scholar
  76. Wissmeier L, Barry DA (2010) Implementation of variably saturated flow into PHREEQC for the simulation of biogeochemical reactions in the vadose zone. Environ Model Softw 25(4):526–538. doi: 10.1016/j.envsoft.2009.10.001 CrossRefGoogle Scholar
  77. Yeh G-T, Sun J, Jardine PM, Burgos WD, Fang Y, Li M-H, Siegel MD (2004) HYDROGEOCHEM 5.0: a three-dimensional model of coupled fluid flow, thermal transport, and HYDROGEOCHEMical transport through variably saturated conditions—version 5.0. ORNL/TM-2004/107. U.S. Department of EnergyGoogle Scholar
  78. Zhang H, Lindberg SE, Barnett MO, Vette AF, Gustin MS (2002) Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils. Part 1: simulation of gaseous mercury emissions from soils using a two-resistance exchange interface mode. Atmos Environ 36 (5):835–846. doi: 10.1016/S1352-2310(01)00501-5 CrossRefGoogle Scholar
  79. Zhu J, Sykes JF (2004) Simple screening models of NAPL dissolution in the subsurface. J Contam Hydrol 72(1–4):245–258CrossRefGoogle Scholar
  80. Zhu Y, Ma LQ, Gao B, Bonzongo JC, Harris W, Gu B (2012) Transport and interactions of kaolinite and mercury in saturated sand media. J Hazard Mater 213–214:93–99. doi: 10.1016/j.jhazmat.2012.01.061 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bertrand Leterme
    • 1
  • Philippe Blanc
    • 2
  • Diederik Jacques
    • 1
  1. 1.Performance Assessments, Institute for Environment, Health, and SafetyBelgian Nuclear Research Centre (SCK•CEN)MolBelgium
  2. 2.D3E/BGE, Bureau de Recherches Géologiques et Minières (BRGM)OrleansFrance

Personalised recommendations