Advertisement

Environmental Science and Pollution Research

, Volume 21, Issue 19, pp 11370–11379 | Cite as

A national reconnaissance for selected organic micropollutants in sediments on French territory

  • Emmanuelle VullietEmail author
  • Alexandra Berlioz-Barbier
  • Florent Lafay
  • Robert Baudot
  • Laure Wiest
  • Antoine Vauchez
  • François Lestremau
  • Fabrizio Botta
  • Cécile Cren-Olivé
Research Article

Abstract

To collect a large data set regarding the occurrence of organic substances in sediment, this study presents the examination of 20 micropollutants, as a national survey. The list of target compounds contains two alkylphenols, three polycyclic aromatic hydrocarbons (PAHs) not commonly included in monitoring programmes, six pesticides or metabolites, five pharmaceutical compounds, two hormones, one UV filter and bisphenol A. The selective and sensitive analytical methods, based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) sample preparation followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) or gas chromatography-time-of-flight mass spectrometry (GC-ToF-MS), allow the quantification at limits comprised between 0.5 and 23 ng/g, depending on the compound. The paper summarizes the analytical results from 154 sampling points. Of the 20 target compounds, 9 were determined at least once, and the sediments contained a maximum of 7 substances. The most frequently detected were PAHs (frequency, 77 %; max., 1,400 ng/g). The pharmaceutical compounds, hormones and pesticides were rarely detected in the samples; the most frequently detected was carbamazepine (frequency, 6 %; max., 31 ng/g). In some cases, the levels of PAHs and bisphenol A exceed the predicted no-effect concentration (PNEC) values.

Keywords

Sediments PAHs Pesticides Emerging pollutants LC-MS/MS GC-ToF-MS 

Notes

Acknowledgments

The authors wish to acknowledge the French Ministry of Ecology, Sustainable Development and Energy, the French National Agency for Water and Aquatic Environments (ONEMA) and the water agencies for their financial support. Authors are also grateful to AQUAREF for its technical and analytical support.

References

  1. Agüera A, Fernández-Alba AR, Piedra L, Mézcua M, Gómez MJ (2003) Evaluation of triclosan and biphenylol in marine sediments and urban wastewaters by pressurized liquid extraction and solid phase extraction followed by gas chromatography mass spectrometry and liquid chromatography mass spectrometry. Anal Chim Acta 480:193–205CrossRefGoogle Scholar
  2. Aufartova J, Mahugo-Santana C, Sosa-Ferrera Z, Santana-Rodríguez JJ, Novakova L, Solich P (2011) Determination of steroid hormones in biological and environmental samples using green microextraction techniques: an overview. Anal Chim Acta 704:33–46CrossRefGoogle Scholar
  3. Bergé A, Cladière M, Gasperi J, Coursimault A, Tassin B, Moilleron R (2012) Meta-analysis of environmental contamination by alkylphenols. Environ Sci Pollut Res 19:3798–3819CrossRefGoogle Scholar
  4. Berlioz-Barbier A, Vauchez A, Wiest L, Baudot R, Vulliet E, Cren-Olivé C (2014) Multi-residue analysis of emerging pollutants in sediment using QuEChERS-based extraction followed by LC-MS/MS analysis. Anal Bioanal Chem 406:1259–1266CrossRefGoogle Scholar
  5. Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93:2116–2123CrossRefGoogle Scholar
  6. Boxall A, Rudd M, Brooks B, Caldwell D, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley J, Verslycke T, Ankley G, Beazley K, Belanger S, Berninger J, Carriquiriborde P, Coors A, DeLeo P, Dyer S, Ericson J, Gagné F, Giesy J, Gouin T, Hallstrom L, Karlsson M, Larsson J, Lazorchak J, Mastrocco F, McLaughlin A, McMaster M, Meyerhoff R, Moore R, Parrott J, Snape J, Murray-Smith R, Servos M, Sibley P, Straub J, Szabo N, Topp E, Tetreault G, Trudeau V, Van Der Kraak G (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Sci Health Perspect 120:1221–1229CrossRefGoogle Scholar
  7. Camacho-Muñoz D, Martín J, Santos JL, Aparicio I, Alonso E (2013) Distribution and risk assessment of pharmaceutical compounds in river sediments from Doñana Park (Spain). Water Air Soil Pollut 224:1665–1679CrossRefGoogle Scholar
  8. Dulio V, von der Ohe PC, Slobodnik J (2011) Methodology for setting priorities among emerging substances in the NORMAN network, ICCE Conference, Zurich, Oral PresentationGoogle Scholar
  9. Farré M, Kantiani L, Petrovic M, Pérez S, Barceló D (2012) Achievements and future trends in the analysis of emerging organic contaminants in environmental samples by mass spectrometry and bioanalytical techniques. J Chromatogr A 1259:86–99CrossRefGoogle Scholar
  10. Ferreira Da Silva B, Jelic A, Lopez-Serna R, Mozeto A-A, Petrovic M, Barcelo D (2011) Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of Ebro river basin, Spain. Chemosphere 85:1331–1339CrossRefGoogle Scholar
  11. Flint S, Markle T, Thompson S, Wallace E (2012) Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manag 104:19–34CrossRefGoogle Scholar
  12. Funakoshi G, Kasuya S (2009) Influence of an estuary dam on the dynamics of bisphenol A and alkylphenols. Chemosphere 75:491–497CrossRefGoogle Scholar
  13. Gong J, Xu L, Yang Y, Chen DY, Ran Y (2011) Sequential ASE extraction of alkylphenols from sediments: occurrence and environmental implications. J Hazard Mater 192:643–650CrossRefGoogle Scholar
  14. ICH (2005) International Conference on Harmonisation of technical requirements for registration of pharmaceuticals for human use. Paper presented at the ICH harmonised tripartite guideline, validation of analytical procedures: text and methodology Q2 (R1), ICH GenevaGoogle Scholar
  15. ISO 5667–12 (December 1995) «Water quality. Sampling. Part 12: general guide for sediment sampling»Google Scholar
  16. Kasprzyk-Hordern B, Dinsdale R-M, Guwy A-J (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales. UK Water Res 42:3498–3518CrossRefGoogle Scholar
  17. Labadie P, Budzinski H (2005) Determination of steroidal hormone profiles along the Jalle d’Eysines River (near Bordeaux, France). Environ Sci Technol 39:5113–5120CrossRefGoogle Scholar
  18. Langford KH, Reid M, Thomas KV (2011) Multi-residue screening of prioritized human pharmaceuticals, illicit drugs and bactericides in sediments and sludge. J Environ Monitor 13:2284–2291CrossRefGoogle Scholar
  19. Loffler D, Romke J, Meller M, Ternes TA (2005) Environmental fate of pharmaceuticals in water/sediment systems. Environ Sci Technol 39:5209–5218CrossRefGoogle Scholar
  20. Lopez-Avila V, Hites RA (1981) Oxidation of phenolic antioxidants in a river system. Environ Sci Technol 15:1386–1388CrossRefGoogle Scholar
  21. López de Alda MJ, Gil A, Paz E, Barcelo D (2002) Occurrence and analysis of estrogens and progestogens in river sediments by liquid chromatography-electrospray-mass spectrometry. Analyst 127:1299–1304CrossRefGoogle Scholar
  22. Minten J, Adolfsson-Erici M, Alsberg T (2011) Extraction and analysis of pharmaceuticals in polluted sediment using liquid chromatography mass spectrometry. Int J Environ Anal Chem 91:553–566CrossRefGoogle Scholar
  23. Nikolaou A, Kostopoulou M, Lofrano G, Meric S, Petsas A, Vagi M (2009) Levels and toxicity of polycyclic aromatic hydrocarbons in marine sediments. Trends Anal Chem 28:653–664CrossRefGoogle Scholar
  24. OECD/SIDS (1994) Screening Information Data Set (SIDS) of OECD high production volume chemicals programmeGoogle Scholar
  25. Peck M, Gibson RW, Kortenkamp A, Hill EM (2004) Sediments are major sinks of steroidal estrogens in two United Kingdom rivers. Environ Toxicol Chem 23:945–952CrossRefGoogle Scholar
  26. Petrovic M, Hernando M-D, Diaz-Cruz M-S, Barcelo D (2005) Liquid chromatography-tamdem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review. J Chromatogr A 1067:1–14CrossRefGoogle Scholar
  27. Pintado-Herrera MG, González-Mazo E, Lara-Martín PA (2014) Determining the distribution of triclosan and methyl triclosan in estuarine settings. Chemosphere 95:478–485CrossRefGoogle Scholar
  28. Pojana G, Gomiero A, Jonkers N, Marcomini A (2007) Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environ Int 33:929–936CrossRefGoogle Scholar
  29. REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) (2006) European Parliament and Council Regulation (EC) No 1907Google Scholar
  30. Scrimshaw MD, Langford KH, Lester JN (2004) Analytical methods for the determination of alkylphenolic surfactants and polybrominated diphenyl ethers in wastewaters and sewage sludges. I a review of methodologies. Environ Technol 25:967–974CrossRefGoogle Scholar
  31. Schüürmann G, Ebert RU, Kühne R (2011) Quantitative read-across for predicting the acute fish toxicity of organic compounds. Environ Sci Technol 45:4616–4622CrossRefGoogle Scholar
  32. Srogi K (2007) Monitoring of environmental exposure polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169–195CrossRefGoogle Scholar
  33. Streck G (2009) Chemical and biological analysis of estrogenic, progestagenic and androgenic steroids in the environment. Trends Anal Chem 28:635–652CrossRefGoogle Scholar
  34. Sumpter J-P, Johnson A-C (2008) 10th Anniversary Perspective: reflections on endocrine disruption in the aquatic environment: from known knowns to unknown unknowns (and many things in between). J Environ Monitor A 10:1476–1485CrossRefGoogle Scholar
  35. Sun JL, Zeng H, Ni HG (2013) Halogenated polycyclic aromatic hydrocarbons in the environment. Chemosphere 90:1751–1759CrossRefGoogle Scholar
  36. Tadeo J, Sanchez-Brunete C, Albero B, Garcia-Valcarcel A, Perez RA (2012) Analysis of emerging organic contaminants in environmental solid samples. Cent Eur J Chem 10:480–520CrossRefGoogle Scholar
  37. Vethaak AD, Lahr J, Schrap SM, Belfroid CA, Rijs GBJ, Gerritsen A, de Boer J, Bulder AS, Grinwis GCM, Kuiper RV, Legler J, Murk TAJ, Peijnenburg W, Verhaar HJM, de Voogt P (2005) An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere 59:511–524CrossRefGoogle Scholar
  38. Viguri J, Verde J, Irabien A (2002) Environmental assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Santander Bay, Northern Spain. Chemosphere 48:157–165CrossRefGoogle Scholar
  39. Vulliet E, Cren-Olivé C (2011) Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environ Pollut 159:2929–2934CrossRefGoogle Scholar
  40. Weston DP, Amweg EL, Mekebri A, Ogle RS, Lydy MJ (2006) Aquatic effects of aerial spraying for mosquito control over urban area. Environ Sci Technol 40:5817–5822CrossRefGoogle Scholar
  41. Xiangrong X, Yuexing W, Xiaoyan L (2008) Sorption behavior of bisphenol A on marine sediments. J Environ Sci Health A 43:239–246CrossRefGoogle Scholar
  42. Yurtkuran Z, Saygi Y (2013) Assessment of pesticide residues in Karaboğaz Lake from Kızılırmak Delta. Turk Bull Environ Contam Toxicol 91:165–170CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Emmanuelle Vulliet
    • 1
    Email author
  • Alexandra Berlioz-Barbier
    • 1
  • Florent Lafay
    • 1
  • Robert Baudot
    • 1
  • Laure Wiest
    • 1
  • Antoine Vauchez
    • 1
  • François Lestremau
    • 2
  • Fabrizio Botta
    • 2
  • Cécile Cren-Olivé
    • 1
  1. 1.Université de Lyon, Institut des Sciences Analytiques UMR 5280 CNRS (Equipe TRACES)VilleurbanneFrance
  2. 2.INERIS—French National Institute for Industrial Environment and RisksVerneuil-en-HalatteFrance

Personalised recommendations