Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Combined effects of silver nanoparticles and 17α-ethinylestradiol on the freshwater mudsnail Potamopyrgus antipodarum

  • 2027 Accesses

  • 21 Citations

Abstract

Ecotoxicological studies have shown that nanosilver is among the most toxic nanomaterials to aquatic organisms. However, research has so far focused on the determination of acute effects. Combined effects of nanosilver with other substances have not yet been studied in aquatic organisms. The present study aimed to investigate the chronic toxicity of nanosilver as well as the potential of nanosilver to influence the effects of co-occurring substances on the freshwater mudsnail Potamopyrgus antipodarum. In 28-day chronic toxicity experiments, the effects of nanosilver on the reproduction of P. antipodarum were assessed. In order to evaluate the influence of nanosilver on other substances, 17α-ethinylestradiol (EE2) was chosen as model compound due to the well-characterized effects on P. antipodarum. In addition to effects on reproduction, exposure to nanosilver and EE2 was monitored by determining the expression of estrogen-responsive transcripts (estrogen receptor and vitellogenin encoding genes). Exposure to nanosilver decreased the reproduction of P. antipodarum (EC10: 5.57 μg l−1; EC50: 15.0 μg l−1). Exposure to EE2 significantly stimulated the embryo production at 25 ng l−1. The presence of nanosilver led to increased EE2 effects at EE2 concentrations that had no influence on reproduction when applied in absence of nanosilver. In contrast, combined exposure to nanosilver decreased EE2 effects at concentrations that stimulated reproduction and the expression of estrogen responsive genes when applied in the absence of nanosilver. This is the first study demonstrating an influence of nanosilver on the effects of co-contaminants on aquatic organisms. The study further highlights the need for chronic experiments to properly assess environmental risks of nanosilver and their effects on co-occurring contaminants.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allen HJ, Impellitteri CA, Macke DA, Heckman JL, Poynton HC, Lazorchak JM, Govindaswamy S, Roose DL, Nadagouda MN (2010) Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ Toxicol Chem 29(12):2742–2750. doi:10.1002/etc.329

  2. Baun A, Sørensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86(3):379–387. doi:10.1016/j.aquatox.2007.11.019

  3. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139

  4. Bernot R, Brandenburg M (2013) Freshwater snail vital rates affected by non-lethal concentrations of silver nanoparticles. Hydrobiologia 714(1):25–34. doi:10.1007/s10750-013-1509-6

  5. Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3(1):11. doi:10.1186/1743-8977-3-11

  6. Bouwmeester H, Poortman J, Peters RJ, Wijma E, Kramer E, Makama S, Puspitaninganindita K, Marvin HJP, Peijnenburg AACM, Hendriksen PJM (2011) Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 5(5):4091–4103. doi:10.1021/nn2007145

  7. Bowman CR, Bailey FC, Elrod-Erickson M, Neigh AM, Otter RR (2012) Effects of silver nanoparticles on zebrafish (Danio rerio) and Escherichia coli (ATCC 25922): a comparison of toxicity based on total surface area versus mass concentration of particles in a model eukaryotic and prokaryotic system. Environ Toxicol Chem 31(8):1793–1800. doi:10.1002/etc.1881

  8. Buffet P-E, Pan J-F, Poirier L, Amiard-Triquet C, Amiard J-C, Gaudin P, Faverney CR-D, Guibbolini M, Gilliland D, Valsami-Jones E, Mouneyrac C (2013) Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food. Ecotoxicol Environ Saf 89:117–124. doi:10.1016/j.ecoenv.2012.11.019

  9. Calabrese EJ (2001) Estrogen and related compounds: biphasic dose responses. Crit Rev Toxicol 31(4–5):503–515. doi:10.1080/20014091111785

  10. Cheng XK, Kan AT, Tomson MB (2004) Naphthalene adsorption and desorption from aqueous C-60 fullerene. J Chem Eng Data 49(3):675–683. doi:10.1021/je030247m

  11. Duft M, Schmitt C, Bachmann J, Brandelik C, Schulte-Oehlmann U, Oehlmann J (2007) Prosobranch snails as test organisms for the assessment of endocrine active chemicals—an overview and a guideline proposal for a reproduction test with the freshwater mudsnail Potamopyrgus antipodarum. Ecotoxicology 16(1):169–182. doi:10.1007/s10646-006-0106-0

  12. Engel DW, Fowler BA (1979) Factors influencing cadmium accumulation and its toxicity to marine organisms. Environ Health Perspect 28(81):8

  13. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531. doi:10.1016/j.envint.2010.10.012

  14. Farkas J, Peter H, Christian P, Gallego Urrea JA, Hassellöv M, Tuoriniemi J, Gustafsson S, Olsson E, Hylland K, Thomas KV (2011) Characterization of the effluent from a nanosilver producing washing machine. Environ Int 37(6):1057–1062. doi:10.1016/j.envint.2011.03.006

  15. Farmen E, Mikkelsen H, Evensen Ø, Einset J, Heier L, Rosseland B, Salbu B, Tollefsen K, Oughton D (2012) Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg/L concentrations of Ag nanoparticles. Aquat Toxicol 108:78–84. doi:10.1016/j.aquatox.2011.07.007

  16. Gagné F, André C, Skirrow R, Gélinas M, Auclair J, van Aggelen G, Turcotte P, Gagnon C (2012) Toxicity of silver nanoparticles to rainbow trout: a toxicogenomic approach. Chemosphere 89(5):615–622

  17. García-Alonso J, Khan FR, Misra SK, Turmaine M, Smith BD, Rainbow PS, Luoma SN, Valsami-Jones E (2011) Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor. Environ Sci Technol 45(10):4630–4636. doi:10.1021/es2005122

  18. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13(5):1145–1155. doi:10.1039/c0em00547a

  19. Griffitt RJ, Luo J, Gao J, Bonzongo J-C, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978. doi:10.1897/08-002.1

  20. Jobling S, Casey D, Rodgers-Gray T, Oehlmann J, Schulte-Oehlmann U, Pawlowski S, Braunbeck T, Turner AP, Tyler CR (2004) Comparative responses of molluscs and fish to environmental estrogens and an estrogenic effluent. Aquat Toxicol 66(2):207–222. doi:10.1016/j.aquatox.2004.01.002

  21. Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2–3):105–119. doi:10.1016/j.tox.2009.08.016

  22. Klein C, Comero S, Stahlmecke B, Romazanov J, Kuhlbusch T, van Doren E, De Temmerman P, Mast J, Wick P, Krug H (2011) NM-Series of representative manufactured nanomaterials: NM-300 Silver characterisation, stability, homogeneity. EUR 24693 EN-2011

  23. Kwong K-L, Chan RKY, Qiu J-W (2009) The potential of the invasive snail Pomacea canaliculata as a predator of various life-stages of five species of freshwater snails. Malacologia 51(2):343–356. doi:10.4002/040.051.0208

  24. Laban G, Nies LF, Turco RF, Bickham JW, Sepulveda MS (2010) The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19(1):185–195. doi:10.1007/s10646-009-0404-4

  25. Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Bishnoi SW (2010) Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal Bioanal Chem 398(2):689–700. doi:10.1007/s00216-010-3915-1

  26. Liu JY, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175. doi:10.1021/es9035557

  27. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23):8959–8964. doi:10.1021/es801785m

  28. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22. doi:10.1016/j.envpol.2007.06.006

  29. OECD (2010) Detailed Review Paper (DRP) on molluscs life-cycle toxicity testing. ENV/JM/MONO(2010)9. Organisation for Economic Co-operaration and Development, Paris

  30. Pan B, Lin D, Mashayekhi H, Xing B (2008) Adsorption and hysteresis of bisphenol A and 17 alpha-ethinyl estradiol on carbon nanomaterials. Environ Sci Technol 42(15):5480–5485. doi:10.1021/es8001184

  31. Park J-W, Henry TB, Ard S, Menn F-M, Compton RN, Sayler GS (2011) The association between nC60 and 17α-ethinylestradiol (EE2) decreases EE2 bioavailability in zebrafish and alters nanoaggregate characteristics. Nanotoxicology 5(3):406–416. doi:10.3109/17435390.2010.525329

  32. PEN (2013) The Project on Emerging Nanotechnologies. http://www.nanotechproject.org/cpi/about/analysis/. Accessed 17 Dec 2013

  33. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45. doi:10.1093/nar/29.9.e45

  34. Pham CH, Yi J, Gu MB (2012) Biomarker gene response in male Medaka (Oryzias latipes) chronically exposed to silver nanoparticle. Ecotoxicol Environ Saf 78:239–245. doi:10.1016/j.ecoenv.2011.11.034

  35. Roh J-Y, Sim SJ, Yi J, Park K, Chung KH, D-y R, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43(10):3933–3940. doi:10.1021/es803477u

  36. Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15:241–248. doi:10.1002/etc.5620150303

  37. Schluesener J, Schluesener H (2013) Nanosilver: application and novel aspects of toxicology. Arch Toxicol 87(4):569–576. doi:10.1007/s00204-012-1007-z

  38. Shi Y, Zhang J-H, Jiang M, Zhu L-H, Tan H-Q, Lu B (2010) Synergistic genotoxicity caused by low concentration of titanium dioxide nanoparticles and p, p′-DDT in human hepatocytes. Environ Mol Mutagen 51(3):192–204. doi:10.1002/em.20527

  39. Sieratowicz A, Stange D, Schulte-Oehlmann U, Oehlmann J (2011) Reproductive toxicity of bisphenol A and cadmium in Potamopyrgus antipodarum and modulation of bisphenol A effects by different test temperature. Environ Pollut 159(10):2766–2774. doi:10.1016/j.envpol.2011.05.012

  40. Stange D, Oehlmann J (2012) Identification of oestrogen-responsive transcripts in Potamopyrgus antipodarum. J Molluscan Stud 78(4):337–342. doi:10.1093/mollus/eys019

  41. Stange D, Sieratowicz A, Horres R, Oehlmann J (2012) Freshwater mudsnail (Potamopyrgus antipodarum) estrogen receptor: identification and expression analysis under exposure to (xeno-)hormones. Ecotoxicol Environ Saf 75:94–101. doi:10.1016/j.ecoenv.2011.09.003

  42. Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006. doi:10.1016/j.scitotenv.2009.11.003

  43. Völker C, Boedicker C, Daubenthaler J, Oetken M, Oehlmann J (2013a) Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multi-generation experiments. PLoS ONE 8(10):e75026. doi:10.1371/journal.pone.0075026

  44. Völker C, Oetken M, Oehlmann J (2013b) The biological effects and possible modes of action of nanosilver. Rev Environ Contam Toxicol 223:81–106. doi:10.1007/978-1-4614-5577-6_4

  45. Wagner M, Oehlmann J (2009) Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environ Sci Pollut Res 16:278–286. doi:10.1007/s11356-009-0107-7

  46. Wallace C (1979) Notes on the occurrence of males in populations of Potamopyrgus jenkinsi. J Molluscan Stud 45(1):61–67

  47. Wijnhoven SWP, Peijnenburg W, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips A, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138. doi:10.1080/17435390902725914

  48. Winterbourn M (1970) The New Zealand species of Potamopyrgus (Gastropoda: Hydrobiidae). Malacologia 10(2):283–321

  49. Zhang W, Sun X, Chen L, Lin K-F, Dong Q-X, Huang C-J, Fu R-B, Zhu J (2012) Toxicological effect of joint cadmium selenium quantum dots and copper ion exposure on zebrafish. Environ Toxicol Chem 31(9):2117–2123. doi:10.1002/etc.1918

  50. Zhao C-M, Wang W-X (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30(4):885–892. doi:10.1002/etc.451

Download references

Acknowledgments

The authors thank Jan Daubenthaler for his practical help in the exposure experiments with P. antipodarum and Heike Heidenreich and Olaf Wappelhorst for ICP-MS analyses. This study was supported by a personal grant to the first author by the scholarship program of the German National Academic Foundation (Studienstiftung des Deutschen Volkes).

Author information

Correspondence to Carolin Völker.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Völker, C., Gräf, T., Schneider, I. et al. Combined effects of silver nanoparticles and 17α-ethinylestradiol on the freshwater mudsnail Potamopyrgus antipodarum . Environ Sci Pollut Res 21, 10661–10670 (2014). https://doi.org/10.1007/s11356-014-3067-5

Download citation

Keywords

  • Nanomaterials
  • Ecotoxicity
  • Freshwater gastropod
  • Endocrine disruption
  • Reproduction
  • Mixture toxicity