Environmental Science and Pollution Research

, Volume 21, Issue 16, pp 9578–9588 | Cite as

Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review

  • Laura C. Castillo-Carvajal
  • José Luis Sanz-Martín
  • Blanca E. Barragán-HuertaEmail author
Review Article


Agro-food, petroleum, textile, and leather industries generate saline wastewater with a high content of organic pollutants such as aromatic hydrocarbons, phenols, nitroaromatics, and azo dyes. Halophilic microorganisms are of increasing interest in industrial waste treatment, due to their ability to degrade hazardous substances efficiently under high salt conditions. However, their full potential remains unexplored. The isolation and identification of halophilic and halotolerant microorganisms from geographically unrelated and geologically diverse hypersaline sites supports their application in bioremediation processes. Past investigations in this field have mainly focused on the elimination of polycyclic aromatic hydrocarbons and phenols, whereas few studies have investigated N-aromatic compounds, such as nitro-substituted compounds, amines, and azo dyes, in saline wastewater. Information regarding the growth conditions and degradation mechanisms of halophilic microorganisms is also limited. In this review, we discuss recent research on the removal of organic pollutants such as organic matter, in terms of chemical oxygen demand (COD), dyes, hydrocarbons, N-aliphatic and N-aromatic compounds, and phenols, in conditions of high salinity. In addition, some proposal pathways for the degradation of aromatic compounds are presented.


Halophilic Biodegradation Hydrocarbons Dyes Pollutants PAH Phenols 



The present research was financially supported by the National Polytechnic Institute (Project SIP-20131865). L Castillo-Carvajal received a scholarship from the Consejo Nacional de Ciencia y Tecnología (México).


  1. Abou-Elela SI, Kamel MM, Fawzy ME (2010) Biological treatment of saline wastewater using salt tolerant microorganisms. Desalination 250:1–5CrossRefGoogle Scholar
  2. Afzal M, Iqbal S, Rauf S, Khalid ZM (2007) Characteristics of phenol biodegradation in saline solutions by monocultures of Pseudomonas aeruginosa and Pseudomonas pseudomallei. J Hazard Mater 149:60–66CrossRefGoogle Scholar
  3. Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328CrossRefGoogle Scholar
  4. Aloui F, Khoufi S, Loukil S, Sayadi S (2009) Performances of an activated sludge process for the treatment of fish processing saline wastewater. Desalination 246:389–396CrossRefGoogle Scholar
  5. Alva VA, Peyton BM (2003) Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity. Environ Sci Technol 37(19):4397–4402CrossRefGoogle Scholar
  6. Amoozegar MA, Ashengroph M, Malekzadeh F, Reza Razavi M, Naddaf S, Kabiri M (2008) Isolation and initial characterization of the tellurite reducing moderately halophilic bacterium, Salinicoccus sp. strain QW6. Microbiol Res 163:456–465CrossRefGoogle Scholar
  7. Arulazhagan P, Vasudevan N (2009) Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. Mar Pollut Bull 58:256–262CrossRefGoogle Scholar
  8. Arulazhagan P, Vasudevan N (2011a) Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Mar Pollut Bull 62:388–394CrossRefGoogle Scholar
  9. Arulazhagan P, Vasudevan N (2011b) Role of nutrients in the utilization of polycyclic aromatic hydrocarbons by halotolerant bacterial strain. J Environ Sci 23(2):282–287CrossRefGoogle Scholar
  10. Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SMM (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource Technol 98(11):2082–2088CrossRefGoogle Scholar
  11. Balamurugan B, Thirumarimurugan M, Kannadasan T (2011) Anaerobic degradation of textile dye bath effluent using Halomonas sp. Bioresource Technol 102:6365–6369CrossRefGoogle Scholar
  12. Barragán BE, Costa C, Márquez MC (2007) Biodegradation of azo dyes by bacteria inoculated on solid media. Dyes Pigments 7:75–81Google Scholar
  13. Barragán-Huerta BE, Costa- Pérez C, Peralta-Cruz J, Barrera-Cortés J, Esparza-García F, Rodríguez-Vázquez R (2007) Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. Int Biodeter Biodegrad 59:239–244CrossRefGoogle Scholar
  14. Bonfá MRL, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by haloarchaea and their use for the reduction of the chemical oxygen demand of the hypersaline petroleum produced water. Chemosphere 84:1671–1676CrossRefGoogle Scholar
  15. Bonfá MRL, Grossman MJ, Piubeli F, Mellado E, Durrant LR (2013) Phenol degradation by halophilic bacteria isolated from hypersaline environments. Biodegradation 24:699–709CrossRefGoogle Scholar
  16. Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluids streams: a short review of recent developments. J Hazard Mater 160:265–288CrossRefGoogle Scholar
  17. Campo P, Platten W III, Suidan MT, Chai Y, Davis JW (2011) Aerobic biodegradation of amines in industrial saline wastewater. Chemosphere 85:1199–1203CrossRefGoogle Scholar
  18. Chan GF, Rashid NAA, Chua LS, llah NA, Nasiri R, Roslan M, Ikubar M (2012) Communal microaerophilic–aerobic biodegradation of Amaranth by novel NAR-2 bacterial consortium. Bioresource Technol 105:48–59CrossRefGoogle Scholar
  19. Chen KC, Wu JY, Liou DJ (2003) Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol 101(1):57–68CrossRefGoogle Scholar
  20. Dafale N, Rao NN, Meshram SU, Wate SR (2008) Decolorization of azo dyes and simulated dye bath wastewater using acclimatized microbial consortium—biostimulation and halotolerance. Bioresource Technol 99:2552–2558CrossRefGoogle Scholar
  21. Dastgheib SMM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798CrossRefGoogle Scholar
  22. Diaz MP, Boyd KG, Grigson SJW, Burgess JG (2002) Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol Bioeng 79(2):145–153CrossRefGoogle Scholar
  23. Dincer AR, Kargi F (2000) Effects of operating parameters on performances of nitrification and denitrification processes. Bioprocess Eng 23(1):75–80CrossRefGoogle Scholar
  24. Dincer AR, Kargi F (2001) Performance of rotating biological disc system treating saline wastewater. Process Biochem 36:901–906CrossRefGoogle Scholar
  25. Djeridi I, Militon C, Grossi V, Cuny P (2013) Evidence for surfactant production by the haloarchaeon Haloferax sp. MSNC14 in hydrocarbon-containing media. Extremophiles 17:669–675CrossRefGoogle Scholar
  26. Dosta J, Nieto JM, Vila J, Grifoll M, Mata-Álvarez J (2011) Phenol removal from hypersaline wastewaters in a Membrane Biological Reactor (MBR): operation and microbiological characterization. Bioresource Technol 102:4013–4020CrossRefGoogle Scholar
  27. El Hajjouji H, Pinelli E, Guiresse M, Merlina G, Revel JC, Hafidi M (2007) Assessment of the genotoxicity of olive mill waste water (OMWW) with the Vicia faba micronucleus test. Mutat Res 634:25–31CrossRefGoogle Scholar
  28. Erdogmus SF, Mutlu B, Korcan SE, Güven K, Konuk M (2013) Aromatic hydrocarbon degradation by halophilic archaea isolated from Camalti Saltern, Turkey. Water Air Soil Pollut 224:1449CrossRefGoogle Scholar
  29. Fairley DJ, Boyd DR, Sharma ND, Allen CCR, Morgan P, Larkin MJ (2002) Aerobic metabolism of 4-hydroxybenzoic acid in Archaea via an unusual pathway involving an intramolecular migration (NIH shift). Appl Environ Microbiol 68:6246–6255CrossRefGoogle Scholar
  30. Farag S, Soliman NA (2011) Biodegradation of crude petroleum oil and environmental pollutants by Candida tropicalis strain. Braz Arch Biol Technol 54:821–830CrossRefGoogle Scholar
  31. Feng TC, Cui CZ, Dong F, Feng YY, Liu YD, Yang XM (2012) Phenanthrene biodegradation by halophilic Martelella sp. AD-3. J Appl Microbiol 113:779–789CrossRefGoogle Scholar
  32. García MT, Ventosa A, Mellado E (2005) Catabolic versatility of aromatic compound-degrading halophilic bacteria. FEMS Microbiol Ecol 54:97–109CrossRefGoogle Scholar
  33. Gayathri KV, Vasudevan N (2010) Enrichment of phenol degrading moderately halophilic bacterial consortium from saline environment. J Bioremed Biodegrad 1:104CrossRefGoogle Scholar
  34. Ghevariya CM, Bhatt JK, Dave BP (2011) Enhanced chrysene degradation by halotolerant Achromobacter xylosoxidans using response surface methodology. Bioresource Technol 102:9668–9674CrossRefGoogle Scholar
  35. Guo J, Zhou J, Wang D, Tian C, Wang P, Uddin MS (2008) A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation 19:15–19CrossRefGoogle Scholar
  36. Haddadi A, Shavandi M (2013) Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil. Int Biodeter Biodegrad 85:29–34CrossRefGoogle Scholar
  37. Hao R, Lu A (2009) Biodegradation of heavy oils by halophilic bacterium. Proc Natl Acad Sci U S A 19:997–1001Google Scholar
  38. Hinteregger C, Streichsbier F (1997) Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic waste-water. Biotechnol Lett 19(11):1099–1102CrossRefGoogle Scholar
  39. Jacobs RPWM, Grant ROH, Kwant J, Marqueine JM, Mentzer E (1992) The composition of produced water from shell operated oil and gas production in the North Sea. In: Ray JP, Englehart FR (eds) Produced water. Plenum Press, New YorkGoogle Scholar
  40. Jin Q, Hu Z, Jin Z, Qiu L, Zhong W, Pan Z (2012) Biodegradation of aniline in an alkaline environment by a novel strain of the halophilic bacterium, Dietzia natronolimnaea JQ-AN. Bioresource Technol 117:148–154CrossRefGoogle Scholar
  41. Kapdan IK, Erten B (2007) Anaerobic treatment of saline wastewater by Halanaerobium lacusrosei. Process Biochem 42:449–453CrossRefGoogle Scholar
  42. Kargi F (2002) Enhanced biological treatment of saline wastewater by using halophilic bacteria. Biotechnol Lett 24:1569–1572CrossRefGoogle Scholar
  43. Kargi F, Dincer AR (1998) Saline wastewater treatment by halophile-supplemented activated sludge culture in an aerated rotating biodisc contactor. Enzyme Microb Technol 22:427–433CrossRefGoogle Scholar
  44. Kargi F, Dincer AR, Pala A (2000) Characterization and biological treatment of pickling industry wastewater. Bioprocess Eng 23:371–374CrossRefGoogle Scholar
  45. Khomyakova M, Bükmez O, Thomas LK, Erb TJ, Berg IA (2011) A methylaspartate cycle in haloarchaea. Science 331:333–337CrossRefGoogle Scholar
  46. Kleinsteuber S, Riis V, Fetzer I, Harms H, Müller S (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 72:3531–3542CrossRefGoogle Scholar
  47. Lawrence SA (2004) Amines: synthesis, properties, and applications. Cambridge University Press, CambridgeGoogle Scholar
  48. Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15:74–92CrossRefGoogle Scholar
  49. Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682CrossRefGoogle Scholar
  50. Lefebvre O, Vasudevan N, Torrijos M, Thanasekaran K, Moletta R (2005) Halophilic biological treatment of tannery soak liquor in a sequencing batch reactor. Water Res 39:1471–1480CrossRefGoogle Scholar
  51. Leitão AL, Duarte MP, Santos Oliveira J (2007) Degradation of phenol by a halotolerant strain of Penicillium chrysogenum. Int Biodeter Biodegrad 59:220–225CrossRefGoogle Scholar
  52. Li J, Jin Z, Yu B (2010) Isolation and characterization of aniline degradations lightly halophilic bacterium, Erwinia sp. strain HSA6. Microbiol Res 165:418–426CrossRefGoogle Scholar
  53. Li H, Zhang Q, Wang XL, Ma XY, Lin KF, Liu YD, Gu JD, Lu SG, Shi L, Lu Q, Shen TT (2012) Biodegradation of benzene homologues in contaminated sediment of the East China Sea. Bioresource Technol 124:129–136CrossRefGoogle Scholar
  54. Lin SH, Shyu CT, Sun MC (1998) Saline wastewater treatment by electrochemical method. Water Res 32(4):1059–1066CrossRefGoogle Scholar
  55. Lozach E (2001) Salt and micro-organisms. Ecole Nationale Veterinaire d’Alfort, Maisons-Alfort, p 98Google Scholar
  56. Mohanty S, Dafale N, Rao NN (2006) Microbial decolorization of reactive black 5 in a two-stage anaerobic-aerobic reactor using acclimatized activated textile sludge. Biodegradation 17:403–413CrossRefGoogle Scholar
  57. Moussavi G, Barikbin B, Mahmoudi M (2010) The removal of high concentrations of phenol from saline wastewater using aerobic granular SBR. Chem Engine J 158:498–504CrossRefGoogle Scholar
  58. Ogugbue CJ, Sawidis T, Oranusi NA (2011) Evaluation of colour removal in synthetic saline wastewater containing azo dyes using an immobilized halotolerant cell system. Ecol Eng 37:2056–2060CrossRefGoogle Scholar
  59. Oren A (2002a) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63CrossRefGoogle Scholar
  60. Oren A (2002b) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1–7CrossRefGoogle Scholar
  61. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834CrossRefGoogle Scholar
  62. Oren A, Gurevich P, Henis Y (1991) Reduction of nitrosubstituted aromatic compounds by the halophilic anaerobic eubacteria Haloanaerobium praevalens and Sporohalobacter marismortui. Appl Environ Microbiol 57:3367–3370Google Scholar
  63. Oren A, Gurevich P, Azachi M, Henis Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3:387–398CrossRefGoogle Scholar
  64. Oturkar CC, Nemade HN, Mulika PM, Patole MS, Hawaldar RR, Gawai KR (2011) Mechanistic investigation of decolorization and degradation of Reactive Red 120 by Bacillus lentus BI377. Bioresource Technol 102:758–764CrossRefGoogle Scholar
  65. Pandey A, Singh P, Lyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegradation 59(2):73–84CrossRefGoogle Scholar
  66. Piubelli F, Grossman MJ, Fantinatti-Garboggini F, Durrant LR (2012) Enhanced reduction of COD and aromatics in petroleum-produced water using indigenous microorganisms and nutrient addition. Int Biodeter Biodegrad 68:78–84CrossRefGoogle Scholar
  67. Ravikumar S, Parimala PS, Gokulakrishnan R (2011) Biodegradation of phenolic compounds by using halotolerant microbes. Int J Plant Anim Environ Sci 1(2):38–45Google Scholar
  68. Saratale RG, Saratale GD, Chang JS, Govindwara SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157CrossRefGoogle Scholar
  69. Sei A, Fathepure BZ (2009) Biodegradation of BTEX at high salinity by an enrichment culture from hypersaline sediments of Rozel Point at Great Salt Lake. J Appl Microbiol 107:2001–2008CrossRefGoogle Scholar
  70. Seo JS, Keum YS, Hu Y, Lee SE, Li QX (2007) Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4- dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol. Biodegradation 18:123–131CrossRefGoogle Scholar
  71. Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ (2004) Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54:1483–1487CrossRefGoogle Scholar
  72. Solis M, Solis A, Pérez HI, Manjarrez N, Flores M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47:1723–1748CrossRefGoogle Scholar
  73. Speight JG (2007) The chemistry and technology of petroleum, 4th edn. Marcel Dekker, New YorkGoogle Scholar
  74. Tan L, Qu YY, Zhou JT, Li A, Gou M (2009) Identification and characteristics of a novel salt tolerant Exiguobacterium sp. for azo dye decolorization. Appl Biochem Biotech 159:728–738CrossRefGoogle Scholar
  75. Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231CrossRefGoogle Scholar
  76. Tapingkae W, Tanasupawat S, Parkin KL, Benjakul S, Visessanguan W (2010) Degradation of histamine by extremely halophilic archaea isolated from high-salt fermented fishery products. Enzyme Microb Technol 46:92–99CrossRefGoogle Scholar
  77. Uddin MS, Zhou J, Qu Y, Guo J, Wang P, Zhao LH (2007) Biodecolorization of azo dye acid red B under high salinity condition. Bull Environ Contam Toxicol 79:440–444CrossRefGoogle Scholar
  78. Van der Zee FP, Villaverde S (2005) Combined anaerobic–aerobic treatment of azo dyes—a short review of bioreactor studies. Wat Res 39(8):1425–1440CrossRefGoogle Scholar
  79. Veil JA, Puder M, Elcock D, Redweik R Jr. (2004) A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. Argonne National Laboratory, Argonne, Illinois for the US Department of Energy, National Energy Technology LaboratoryGoogle Scholar
  80. von Wedal RJ, Mosquera JF, Goldsmith CD, Hater GR, Wong A, Fox TA, Hunt WT, Paulies MS, Quiros JM, Wiegand JW (1988) Bacterial biodegradation of petroleum hydrocarbons in groundwater: in situ augmented bioreclamation with enrichments isolates in California. Water Sci Technol 20:501–503Google Scholar
  81. Wang P, Qu Y, Zhou J (2009) Biodegradation of mixed phenolic compounds under high salt conditions and salinity fluctuations by Arthrobacter sp. W1. Appl Biochem Biotechnol 159:623–633CrossRefGoogle Scholar
  82. Whitehouse BG (1984) The effects of temperature and salinity on the aqueous solubility of polynuclear aromatic hydrocarbons. Mar Chem 14:319–332CrossRefGoogle Scholar
  83. Woolard CR, Irvine RL (1995) Treatment of hypersaline wastewater in the sequencing batch reactor. Water Res 29:1159–1168CrossRefGoogle Scholar
  84. Wu Y, Li T, Yang L (2012) Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: a review. Bioresource Technol 107:10–18CrossRefGoogle Scholar
  85. Wu Y, Xia L, Yu Z, Shabbir S, Kerr PG (2014) In situ bioremediation of surface waters by periphytons. Bioresource Technol 151:367–372CrossRefGoogle Scholar
  86. Xia W, Li J, Xia Y, Song Z, Zhou J (2012) Optimization of diesel oil biodegradation in seawater using statistical experimental methodology. Water Sci Tech 66:1301–1309CrossRefGoogle Scholar
  87. Zhao B, Wang H, Mao X, Li R (2009) Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol 58:205–210CrossRefGoogle Scholar
  88. Zhong Y, Luan TG, Lin L, Liu H, Tam NFY (2011) Production of metabolites in the biodegradation of phenanthrene, fluoranthene and pyrene by the mixed culture of Mycobacterium sp. and Sphingomonas sp. Bioresource Technol 102:2965–2972CrossRefGoogle Scholar
  89. Zhuang S, Han Z, Bai Z, Zhuang G, Shim H (2010) Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environ Pollut 158:1119–1126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Laura C. Castillo-Carvajal
    • 1
  • José Luis Sanz-Martín
    • 2
  • Blanca E. Barragán-Huerta
    • 1
    Email author
  1. 1.Departamento de Ingeniería en Sistemas Ambientales, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalUnidad Profesional Adolfo López MateosMexico
  2. 2.Departamento de Biología Molecular, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain

Personalised recommendations