Environmental Science and Pollution Research

, Volume 22, Issue 2, pp 762–773 | Cite as

Solar energy for wastewater treatment: review of international technologies and their applicability in Brazil

  • R. B. P. Marcelino
  • M. T. A. Queiroz
  • C. C. Amorim
  • M. M. D. Leão
  • F. F. Brites-Nóbrega
Advanced Oxidation Technologies: Advances and Challenges in IberoAmerican Countries

Abstract

Several studies have reported the adverse effects of recalcitrant compounds and emerging contaminants present in industrial effluents, which are not degradable by ordinary biological treatment. Many of these compounds are likely to accumulate in living organisms through the lipid layer. At concentrations above the limits of biological tolerance, these compounds can be harmful to the ecosystem and may even reach humans through food chain biomagnification. In this regard, advanced oxidation processes (AOPs) represent an effective alternative for the removal of the pollutants. This study focused on the AOP involving the use of ultraviolet radiation in homogeneous and heterogeneous systems. Based on the literature review, comparisons between natural and artificial light were established, approaching photoreactors constructive and operational characteristics. We concluded that the high availability of solar power in Brazil would make the implementation of the AOP using natural solar radiation for the decontamination of effluents feasible, thereby contributing to clean production and biodiversity conservation. This will serve as an important tool for the enforcement of environmental responsibility among public and private institutions.

Keywords

Recalcitrant compounds Emerging pollutants Decontamination Solar advanced oxidation processes Photocatalysis Photo-Fenton Solar power 

References

  1. Agullo-Barcelo M, Polo-Lopez MI, Lucena F, Jofre J, Fernandez-Ibanez P (2013) Solar advanced oxidation processes as disinfection tertiary treatments for real wastewater: implications for water reclamation. Appl Catal B Environ 136–137:341–350CrossRefGoogle Scholar
  2. Amorim CC, Bottrel SEC, Costa EP, Teixeira APC, Leao MMD (2013) Removal of ethylenthiourea and 1,2,4-triazole pesticide metabolites from water by adsorption in commercial activated carbons. J Environ Sci Health B 48:183–190CrossRefGoogle Scholar
  3. Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol C Photochem Rev 7:127–144CrossRefGoogle Scholar
  4. Avtaeva SV, Sosnin EA, Saghi B, Panarin VA, Rahmani B (2013) Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp. Plasma Phys Rep 39:768–778CrossRefGoogle Scholar
  5. Azbar N, Kestioğlu K, Yonar T, (2005). Application of Advanced Oxidation Processes (AOPs) to wastewater treatment. Case studies: decolourization of textile effluents, detoxification of olive mill effluent, treatment of domestic wastewater. In A.R. Burk (ed) Water pollution: New research. Nova Science Publishers, New York, pp 99–118 Google Scholar
  6. Bolton JR, Bircher KG, Tumas W, Tolman CA (2001) Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems. Pure Appl Chem 73:627–637CrossRefGoogle Scholar
  7. Chan PY, Gamal El-Din M, Bolton JR (2012) A solar-driven UV/chlorine advanced oxidation process. Water Res 46:5672–5682CrossRefGoogle Scholar
  8. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027CrossRefGoogle Scholar
  9. Colombo R, Ferreira TCR, Alves SA, Lanza MRV (2011) Photo-Fenton degradation of the insecticide esfenvalerate in aqueous medium using a recirculation flow-through UV photoreactor. J Hazard Mater 198:370–375CrossRefGoogle Scholar
  10. Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776CrossRefGoogle Scholar
  11. Corseuil HX, Monier AL, Fernandes M, Schneider MR, Nunes CC, do Rosario M, Alvarez PJJ (2011) BTEX plume dynamics following an ethanol blend release: geochemical footprint and thermodynamic constraints on natural attenuation. Environ Sci Technol 45:3422–3429CrossRefGoogle Scholar
  12. de Freitas AM, Sirtori C, Peralta-Zamora PG (2008) Avaliação do potencial de processos oxidativos avançados para remediação de águas contaminadas com geosmina e 2-MIB. Química Nova 31(1):75–78. doi:10.1590/S0100-40422008000100016
  13. de Freitas AM, Sirtori C, Lenz CA, Peralta Zamora PG (2013) Microcystin-LR degradation by solar photo-Fenton, UV-A/photo-Fenton and UV-C/H2O2: a comparative study. Photochem Photobiol Sci 12:696–702CrossRefGoogle Scholar
  14. de Sena RF, Moreira RFPM, Jose HJ (2013) Assessment of polyacrylamide degradation using advanced oxidation processes and ferrate(VI) oxidation. Chem Eng Commun 200:235–252CrossRefGoogle Scholar
  15. Di Iaconi C, Del Moro G, De Sanctis M, Rossetti S (2010) A chemically enhanced biological process for lowering operative costs and solid residues of industrial recalcitrant wastewater treatment. Water Res 44:3635–3644CrossRefGoogle Scholar
  16. Dukkanci M, Vinatoru M, Mason TJ (2014) The sonochemical decolourisation of textile azo dye Orange II: effects of Fenton type reagents and UV light. Ultrason Sonochem 21:846–853CrossRefGoogle Scholar
  17. Durán A, Monteagudo JM, Sanmartín I, García-Díaz A (2013) Sonophotocatalytic mineralization of antipyrine in aqueous solution. Appl Catal B Environ 138–139:318–325CrossRefGoogle Scholar
  18. Foletto E, Battiston S, Collazzo G, Bassaco M, Mazutti M (2012) Degradation of leather dye using CeO2–SnO2 nanocomposite as photocatalyst under sunlight. Water Air Soil Pollut 223:5773–5779CrossRefGoogle Scholar
  19. Frontistis Z, Drosou C, Tyrovola K, Mantzavinos D, Fatta-Kassinos D, Venieri D, Xekoukoulotakis NP (2012) Experimental and modeling studies of the degradation of estrogen hormones in aqueous TiO2 suspensions under simulated solar radiation. Ind Eng Chem Res 51:16552–16563CrossRefGoogle Scholar
  20. Fujishima A, Zhang X, Tryk DA (2007) Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int J Hydrog Energy 32:2664–2672CrossRefGoogle Scholar
  21. Gomis J, Vercher RF, Amat AM, Martire DO, Gonzalez MC, Bianco Prevot A, Montoneri E, Arques A, Carlos L (2013) Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: sensitizing effect and photo-Fenton-like process. Catal Today 209:176–180CrossRefGoogle Scholar
  22. Guimaraes JR, Turato Farah CR, Maniero MG, Fadini PS (2012) Degradation of formaldehyde by advanced oxidation processes. J Environ Manag 107:96–101CrossRefGoogle Scholar
  23. Gumy D, Giraldo SA, Rengifo J, Pulgarin C (2008) Effect of suspended TiO2 physicochemical characteristics on benzene derivatives photocatalytic degradation. Appl Catal B Environ 78:19–29CrossRefGoogle Scholar
  24. Gumy D, Giraldo SA, Rengifo J, Pulgarin C (2009) Effect of suspended TiO2 physicochemical characteristics on benzene derivatives photocatalytic degradation. Appl Catal B Environ 78:19–29CrossRefGoogle Scholar
  25. Ikehata K, El-Din MG (2004) Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 26:327–343CrossRefGoogle Scholar
  26. Ikehata K, El-Din MG (2006) Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review. J Environ Eng Sci 5:81–135CrossRefGoogle Scholar
  27. Joao Americo Vilela Jr, Vaz AR, Farias VJ, de Freitas LC, Coelho EAA, Vieira JB Jr (2005) An electronic ballast with high power factor and low voltage stress. IEEE Trans Ind Appl 41:917–926CrossRefGoogle Scholar
  28. Kušić H, Leszczynska D (2012) Altered toxicity of organic pollutants in water originated from simultaneous exposure to UV photolysis and CdSe/ZnS quantum dots. Chemosphere 89:900–906CrossRefGoogle Scholar
  29. Lopez Cisneros R, Gutarra Espinoza A, Litter MI (2002) Photodegradation of an azo dye of the textile industry. Chemosphere 48:393–399CrossRefGoogle Scholar
  30. Malagueta D, Szklo A, Borba BSMC, Soria R, Aragao R, Schaeffer R, Dutra R (2013) Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system. Energy Policy 59:198–212CrossRefGoogle Scholar
  31. Malato S, Blanco JN, Vidal A, Richter C (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B Environ 37:1–15CrossRefGoogle Scholar
  32. Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59CrossRefGoogle Scholar
  33. Malato S, Blanco J, Vidal A, Alarcón D, Maldonado M I, Cáceres J, Gernjak W (2003) Applied studies in solar photocatalytic detoxification: an overview. Solar Energy, 75(4):329–336Google Scholar
  34. Martins FR, Pereira EB, Silva SAB, Abreu SL, Colle S (2008) Solar energy scenarios in Brazil, part one: resource assessment. Energy Policy 36:2853–2864CrossRefGoogle Scholar
  35. Martins FR, Abreu SL, Pereira EB (2012) Scenarios for solar thermal energy applications in Brazil. Energy Policy 48:640–649CrossRefGoogle Scholar
  36. Matafonova G, Batoev V (2012) Recent progress on application of UV excilamps for degradation of organic pollutants and microbial inactivation. Chemosphere 89:637–647CrossRefGoogle Scholar
  37. McNutt M (2013) Mercury and health. Science 341:1430CrossRefGoogle Scholar
  38. Michael I, Hapeshi E, Michael C, Varela AR, Kyriakou S, Manaia CM, Fatta-Kassinos D (2012) Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res 46:5621–5634CrossRefGoogle Scholar
  39. Michael I, Hapeshi E, AceNa J, Perez S, Petrovic M, Zapata A, Barcelo D, Malato S, Fatta-Kassinos D (2013) Light-induced catalytic transformation of ofloxacin by solar Fenton in various water matrices at a pilot plant: mineralization and characterization of major intermediate products. Sci Total Environ 461–462:39–48CrossRefGoogle Scholar
  40. Mico MM, Bacardit J, Malfeito J, Sans C (2013) Enhancement of pesticide photo-Fenton oxidation at high salinities. Appl Catal B Environ 132–133:162–169CrossRefGoogle Scholar
  41. Mitscher M, Ruther R (2012) Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil. Energy Policy 49:688–694CrossRefGoogle Scholar
  42. MMA (2013) Perfil do Gerenciamento de Mercúrio no Brasil, incluindo seus Resíduos / Ministério do Meio Ambiente. In: MMA (Hrsg.), Brasília, pp 107Google Scholar
  43. Moncayo-Lasso A, Rincon A-G, Pulgarin C, Benitez N (2012) Significant decrease of THMs generated during chlorination of river water by previous photo-Fenton treatment at near neutral pH. J Photochem Photobiol A Chem 229:46–52CrossRefGoogle Scholar
  44. Monteagudo JM, Duran A, Aguirre M, San Martin I (2011) Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process. J Hazard Mater 185:131–139CrossRefGoogle Scholar
  45. Monteagudo JM, Duran A, Corral JM, Carnicer A, Frades JM, Alonso MA (2012) Ferrioxalate-induced solar photo-Fenton system for the treatment of winery wastewaters. Chem Eng J 181–182:281–288CrossRefGoogle Scholar
  46. Murcia MD, Gomez M, Gomez E, Gomez JL, Hidalgo AM, Christofi N (2012) A new substrate and by-product kinetic model for the photodegradation of 4-chlorophenol with KrCl exciplex UV lamp and hydrogen peroxide. Chem Eng J 187:36–44CrossRefGoogle Scholar
  47. Neyens E, Baeyens J (2003) A review of classic Fentons peroxidation as an advanced oxidation technique. J Hazard Mater 98:33–50CrossRefGoogle Scholar
  48. Nezamzadeh-Ejhieh A, Banan Z (2011) A comparison between the efficiency of CdS nanoparticles/zeolite A and CdO/zeolite A as catalysts in photodecolorization of crystal violet. Desalination 279:146–151CrossRefGoogle Scholar
  49. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renew Sust Energ Rev 11:401–425CrossRefGoogle Scholar
  50. Nogueira RFP, Modé DF (2002) Fotodegradação de fenol e clorofenóis por processo foto-Fenton mediado por ferrioxalato. Eclética Química, 27(spe), 169–185. doi:10.1590/S0100-46702002000200015
  51. Nogueira RFP, Trovó AG, da Silva MRA, Villa RD, de Oliveira MC (2007) Fundamentos e aplicações ambientais dos processos fenton e foto-fenton. Química Nova 30(2):400–408. doi:10.1590/S0100-40422007000200030
  52. Pascoal SdA, de Lima CAP, de Sousa JT, de Lima GGC, Vieira FF (2007) Aplicação de radiação UV artificial e solar no tratamento fotocatalítico de efluentes de curtume. Química Nova 30(5):1082–1087. doi:10.1590/S0100-40422007000500006
  53. Paul B, Martens WN, Frost RL (2012) Immobilised anatase on clay mineral particles as a photocatalyst for herbicides degradation. Appl Clay Sci 57:49–54CrossRefGoogle Scholar
  54. Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47:219–256CrossRefGoogle Scholar
  55. Pereira MG, Camacho CF, Freitas MAV, Silva NFD (2012) The renewable energy market in Brazil: current status and potential. Renew Sust Energ Rev 16:3786–3802CrossRefGoogle Scholar
  56. Pereira AO Jr, Cunha da Costa R, Costa CV, Marreco JM, La Rovere EL (2013) Perspectives for the expansion of new renewable energy sources in Brazil. Renew Sust Energ Rev 23:49–59CrossRefGoogle Scholar
  57. Prieto-Rodriguez L, Oller I, Klamerth N, Aguera A, Rodriguez EM, Malato S (2013) Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Res 47:1521–1528CrossRefGoogle Scholar
  58. Renewable Resource Data Center, NRE Laboratory (2009) NREL's Spectral Solar Radiation Data BaseGoogle Scholar
  59. Rocha EMR, Vilar VJP, Fonseca AL, Saraiva I, Boaventura RAR (2011) Landfill leachate treatment by solar-driven AOPs. Sol Energy 85:46–56CrossRefGoogle Scholar
  60. Rodriguez EM, Fernandez G, Klamerth N, Maldonado MI, Alvarez PM, Malato S (2010) Efficiency of different solar advanced oxidation processes on the oxidation of bisphenol A in water. Appl Catal B Environ 95:228–237CrossRefGoogle Scholar
  61. Saien J, Nejati H (2007) Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. J Hazard Mater 148:491–495CrossRefGoogle Scholar
  62. Sanchez Perez JA, Roman Sanchez IM, Carra I, Cabrera Reina A, Casas Lopez JL, Malato S (2013) Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs. J Hazard Mater 244–245:195–203CrossRefGoogle Scholar
  63. Sanchez-Polo M, Abdel Daiem MM, Ocampo-Perez R, Rivera-Utrilla J, Mota AJ (2013) Comparative study of the photodegradation of bisphenol A by HO, SO4 and CO3 /HCO3 radicals in aqueous phase. Sci Total Environ 463–464:423–431CrossRefGoogle Scholar
  64. Selvam K, Muruganandham M, Muthuvel I, Swaminathan M (2007) The influence of inorganic oxidants and metal ions on semiconductor sensitized photodegradation of 4-fluorophenol. Chem Eng J 128:51–57CrossRefGoogle Scholar
  65. Serra A, Brillas E, Domenech X, Peral J (2011) Treatment of biorecalcitrant alpha-methylphenylglycine aqueous solutions with a solar photo-Fenton-aerobic biological coupling: biodegradability and environmental impact assessment. Chem Eng J 172:654–664CrossRefGoogle Scholar
  66. Silva MRA, Trovo AG, Nogueira RFP (2007) Degradation of the herbicide tebuthiuron using solar photo-Fenton process and ferric citrate complex at circumneutral pH. J Photochem Photobiol A Chem 191:187–192CrossRefGoogle Scholar
  67. Sohrabi MR, Ghavami M (2008) Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: effect of operational parameters. J Hazard Mater 153:1235–1239CrossRefGoogle Scholar
  68. Song W, Chen W, Cooper WJ, Greaves J, Miller GE (2008) Free-radical destruction of β-lactam antibiotics in aqueous solution. J Phys Chem A 112:7411–7417CrossRefGoogle Scholar
  69. Souza BS, Moreira FC, Dezotti MWC, Vilar VJP, Boaventura RAR (2013) Application of biological oxidation and solar driven advanced oxidation processes to remediation of winery wastewater. Catal Today 209:201–208CrossRefGoogle Scholar
  70. Stasinakis A (2008) Use of selected advanced oxidation processes (AOPs) for wastewater treatment—a mini review. Glob NEST J 10:376–385Google Scholar
  71. Sun L, Bolton JR (1996) Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions. J Physi Chem 100:4127–4134CrossRefGoogle Scholar
  72. Talebian N, Nilforoushan MR, Mogaddas FJ (2013) Comparative study on the sonophotocatalytic degradation of hazardous waste. Ceram Int 39:4913–4921CrossRefGoogle Scholar
  73. Tanveer M, Tezcanli Guyer G (2013) Solar assisted photo degradation of wastewater by compound parabolic collectors: review of design and operational parameters. Renew Sust Energ Rev 24:534–543CrossRefGoogle Scholar
  74. Tarasenko VF, Sosnin EA (2012) Barrier-discharge excilamps: history, operating principle, prospects. J Opt Technol 79:653–658CrossRefGoogle Scholar
  75. Thakur IS (2006) Environmental biotechnology: basic concepts and applications. I K International Publishing House, New DelhiGoogle Scholar
  76. Teixeira SCG, Canela MC (2007) Degradação do pesticida Padron® por processos fotoquímicos utilizando luz artificial e solar. Química Nova 30(8):1830–1834. doi:10.1590/S0100-40422007000800007
  77. Thiruvenkatachari R, Vigneswaran S, Moon I (2008) A review on UV/TiO2 photocatalytic oxidation process (Journal Review). Korean J Chem Eng 25:64–72CrossRefGoogle Scholar
  78. Torrades F, Garcia-Montano J, Antonio Garcia-Hortal J, Domenech X, Peral J (2004) Decolorization and mineralization of commercial reactive dyes under solar light assisted photo-Fenton conditions. Sol Energy 77:573–581CrossRefGoogle Scholar
  79. Torres RA, Pétrier C, Combet E, Moulet F, Pulgarin C (2006) Bisphenol A mineralization by integrated ultrasound-UV-iron(II) treatment. Environ Sci Technol 41:297–302CrossRefGoogle Scholar
  80. Trovó AG, Villa RD, Nogueira RFP (2005) Utilização de reações foto-Fenton na prevenção de contaminações agrícolas. Química Nova 28(5):847–851. doi:10.1590/S0100-40422005000500023
  81. Trovó AG, Silva TFS, Gomes O, Machado AEH, Neto WB, Muller PS, Daniel D (2013) Degradation of caffeine by photo-Fenton process: optimization of treatment conditions using experimental design. Chemosphere 90:170–175CrossRefGoogle Scholar
  82. Vedrenne M, Vasquez-Medrano R, Prato-Garcia D, Frontana-Uribe BA, Hernandez-Esparza M, de Andres JM (2012) A ferrous oxalate mediated photo-Fenton system: toward an increased biodegradability of indigo dyed wastewaters. J Hazard Mater 243:292–301CrossRefGoogle Scholar
  83. Vilar VJP, Capelo SMS, Silva TFCV, Boaventura RAR (2011) Solar photo-Fenton as a pre-oxidation step for biological treatment of landfill leachate in a pilot plant with CPCs. Catal Today 161:228–234CrossRefGoogle Scholar
  84. Vinodgopal K, Wynkoop DE, Kamat PV (1996) Environmental photochemistry on semiconductor surfaces: photosensitized degradation of a textile Azo Dye, Acid Orange 7, on TiO2 particles using visible light. Environ Sci Technol 30:1660–1666CrossRefGoogle Scholar
  85. Wakabayashi FT, de Brito MAG, Ferreira CS, Canesin CA (2007) Setting the preheating and steady-state operation of electronic ballasts, considering electrodes of hot-cathode fluorescent lamps. IEEE Trans Power Electron 22:899–911CrossRefGoogle Scholar
  86. Will IBS, Moraes JEF, Teixeira ACSC, Guardani R, Nascimento CAO (2004) Photo-Fenton degradation of wastewater containing organic compounds in solar reactors. Sep Purif Technol 34:51–57CrossRefGoogle Scholar
  87. Wols BA, Hofman-Caris CHM, Harmsen DJH, Beerendonk EF (2013) Degradation of 40 selected pharmaceuticals by UV/H2O2. Water Res 47:5876–5888CrossRefGoogle Scholar
  88. Xu B, Chen Z, Qi F, Ma J, Wu F (2010) Comparison of N-nitrosodiethylamine degradation in water by UV irradiation and UV/O3: efficiency, product and mechanism. J Hazard Mater 179:976–982CrossRefGoogle Scholar
  89. Yonar T (2010) Treatability studies on traditional hand-printed textile industry wastewaters using Fenton and Fenton-like processes: plant design and cost analysis. Fresenius Environ Bull 19:2758–2768Google Scholar
  90. Yonar T, Yonar GK, Kestioglu K, Azbar N (2005) Decolorisation of textile effluent using homogeneous photochemical oxidation processes. Color Technol 121:258–264CrossRefGoogle Scholar
  91. Yu Y, Yu JC, Yu J-G, Kwok Y-C, Che Y-K, Zhao J-C, Ding L, Ge W-K, Wong P-K (2005) Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl Catal A Gen 289:186–196CrossRefGoogle Scholar
  92. Zapata A, Malato S, Sanchez-Perez JA, Oller I, Maldonado MI (2010) Scale-up strategy for a combined solar photo-Fenton/biological system for remediation of pesticide-contaminated water. Catal Today 151:100–106CrossRefGoogle Scholar
  93. Zhang Z, Yates JT (2010) Direct observation of surface-mediated electron–hole pair recombination in TiO2(110). J Phys Chem C 114:3098–3101CrossRefGoogle Scholar
  94. Zheng N, Wang Q, Zhang X, Zheng D, Zhang Z, Zhang S (2007) Population health risk due to dietary intake of heavy metals in the industrial area of Huludao City, China. Sci Total Environ 387:96–104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • R. B. P. Marcelino
    • 1
  • M. T. A. Queiroz
    • 1
  • C. C. Amorim
    • 1
  • M. M. D. Leão
    • 1
  • F. F. Brites-Nóbrega
    • 1
  1. 1.Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos da UFMGUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations