Environmental Science and Pollution Research

, Volume 21, Issue 19, pp 11293–11304 | Cite as

Phytoremediating a copper mine soil with Brassica juncea L., compost and biochar

  • Alfonso Rodríguez-Vila
  • Emma F. Covelo
  • Rubén Forján
  • Verónica Asensio
Research Article

Abstract

The soils at a depleted copper mine in Touro (Galicia, Spain) are chemically degraded. In order to determine the effect of amendments and vegetation on the chemical characteristics of a mine soil and on the plant uptake of metals, a greenhouse experiment was carried out for 3 months. A settling pond soil was amended with different percentages of a compost and biochar mixture and vegetated with Brassica juncea L. The results showed that the untreated settling pond soil was polluted by Cu. Amendments and planting mustards decreased the pseudototal concentration of this metal, reduced the extreme soil acidity and increased the soil concentrations of C and TN. Both treatments also decreased the CaCl2-extractable Co, Cu and Ni concentrations. However, the amendments increased the pseudototal concentration of Zn in the soil, provided by the compost that was used. The results also showed that mustards extracted Ni efficiently from soils, suggesting that B. juncea L. is a good phytoextractor of Ni in mine soils.

Keywords

Settling pond Phytoremediation Metals Compost Biochar Brassica juncea 

Notes

Acknowledgments

This study was supported by the Spanish Ministry of Education and Science through project CGL2009-07843 and by the University of Vigo through a pre-doctoral fellowship awarded to V. Asensio.

References

  1. Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142. doi: 10.1016/j.geoderma.2004.01.003 CrossRefGoogle Scholar
  2. Amlinger F, Götz B, Dreher P et al (2003) Nitrogen in biowaste and yard waste compost: dynamics of mobilisation and availability—a review. Eur J Soil Biol 39:107–116. doi: 10.1016/S1164-5563(03)00026-8 CrossRefGoogle Scholar
  3. Asensio V, Vega FA, Singh BR, Covelo EF (2013a) Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils. Sci Total Environ 443:446–453. doi: 10.1016/j.scitotenv.2012.09.069 CrossRefGoogle Scholar
  4. Asensio V, Vega FA, Andrade ML, Covelo EF (2013b) Tree vegetation and waste amendments to improve the physical condition of copper mine soils. Chemosphere 90:603–610. doi: 10.1016/j.chemosphere.2012.08.050 CrossRefGoogle Scholar
  5. Asensio V, Vega FA, Andrade ML, Covelo EF (2013c) Technosols made of wastes to improve physico-chemical characteristics of a copper mine soil. Pedosphere 23:1–9. doi: 10.1016/S1002-0160(12)60074-5 CrossRefGoogle Scholar
  6. Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. doi: 10.1007/s11104-010-0464-5 CrossRefGoogle Scholar
  7. Beesley L, Moreno-Jiménez E, Gomez-Eyles JL et al (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282. doi: 10.1016/j.envpol.2011.07.023 CrossRefGoogle Scholar
  8. Bendfeldt ES, Burger JA, Lee Daniels W, Daniels WL (2001) Quality of amended mine soils after sixteen years. Soil Sci Soc Am J 65:1736–1744. doi: 10.2136/sssaj2001.1736 CrossRefGoogle Scholar
  9. Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214. doi: 10.1111/gcbb.12037 CrossRefGoogle Scholar
  10. Blackwell P, Reithmuller G, Collins M (2009) Biochar application to soil. In: Lehmann J, Joseph S (eds) Biochar Environ Manag Sci Technol. Earthscan, London, pp 207-226Google Scholar
  11. Bolan N, Adriano D, Mahimairaja S (2004) Distribution and bioavailability of trace elements in livestock and poultry manure by-products. Crit Rev Environ Sci Technol 34:291–338. doi: 10.1080/10643380490434128 CrossRefGoogle Scholar
  12. Brown SL, Henry CL, Chaney R et al (2003) Using municipal biosolids in combination with other residuals to restore metal-contaminated mining areas. Plant Soil 249:203–215CrossRefGoogle Scholar
  13. Busuioc G, Elekes CC, Stihi C et al (2011) The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Environ Sci Pollut Res Int 18:890–896. doi: 10.1007/s11356-011-0446-z CrossRefGoogle Scholar
  14. Chintala R, Mollinedo J, Schumacher TE et al (2014) Effect of biochar on chemical properties of acidic soil. Arch Agron Soil Sci 60:393–404. doi: 10.1080/03650340.2013.789870 CrossRefGoogle Scholar
  15. Chodak M, Niklińska M (2010) Effect of texture and tree species on microbial properties of mine soils. Appl Soil Ecol 46:268–275. doi: 10.1016/j.apsoil.2010.08.002 CrossRefGoogle Scholar
  16. Clemente R, Almela C, Bernal MP (2006) A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environ Pollut 143:397–406. doi: 10.1016/j.envpol.2005.12.011 CrossRefGoogle Scholar
  17. Conesa HM, Schulin R (2010) The Cartagena-La Unión mining district (SE Spain): a review of environmental problems and emerging phytoremediation solutions after fifteen years research. J Environ Monit 12:1225–1233. doi: 10.1039/c000346h CrossRefGoogle Scholar
  18. Conesa HM, Faz A, Arnaldos R (2007a) Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Chemosphere 66:38–44. doi: 10.1016/j.chemosphere.2006.05.041 CrossRefGoogle Scholar
  19. Conesa HM, Faz Á, García G, Arnaldos R (2007b) Heavy metal contamination in the semiarid area of Cartagena-La Unión (SE Spain) and its implications for revegetation. Fresenius Environ Bull 16:1076–1081Google Scholar
  20. D’Emilio M, Caggiano R, Macchiato M et al (2013) Soil heavy metal contamination in an industrial area: analysis of the data collected during a decade. Environ Monit Assess 185:5951–5964. doi: 10.1007/s10661-012-2997-y CrossRefGoogle Scholar
  21. De Varennes A, Abreu MM, Qu G, Cunha-Queda C (2010) Enzymatic activity of a mine soil varies according to vegetation cover and level of compost applied. Int J Phytoremediation 12:371–383. doi: 10.1080/15226510903051757 CrossRefGoogle Scholar
  22. Do Nascimento CW, Amarasiriwardena D, Xing B (2006) Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ Pollut 140:114–123. doi: 10.1016/j.envpol.2005.06.017 CrossRefGoogle Scholar
  23. Evangelou MWH, Daghan H, Schaeffer A (2004) The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere 57:207–213. doi: 10.1016/j.chemosphere.2004.06.017 CrossRefGoogle Scholar
  24. Fellet G, Marmiroli M, Marchiol L (2014) Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Sci Total Environ 468-469C:598–608. doi: 10.1016/j.scitotenv.2013.08.072 CrossRefGoogle Scholar
  25. Fowles M (2007) Black carbon sequestration as an alternative to bioenergy. Biomass Bioenergy 31:426–432. doi: 10.1016/j.biombioe.2007.01.012 CrossRefGoogle Scholar
  26. Hemmat A, Aghilinategh N, Rezainejad Y, Sadeghi M (2010) Long-term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran. Soil Tillage Res 108:43–50. doi: 10.1016/j.still.2010.03.007 CrossRefGoogle Scholar
  27. Houba VJG, Temminghoff EJM, Gaikhorst GA, Van Vark W (2000) Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun Soil Sci Plant Anal 31:1299–1396CrossRefGoogle Scholar
  28. Karami N, Clemente R, Moreno-Jiménez E et al (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48. doi: 10.1016/j.jhazmat.2011.04.025 CrossRefGoogle Scholar
  29. Laird D, Brown R (2009) Review of the pyrolysis platform for coproducing bio‐oil and biochar. Biofuels Bioprod Bioref 3:547–562. doi: 10.1002/bbb CrossRefGoogle Scholar
  30. Lehmann J (2007) A handful of carbon. Nature 447:10–11CrossRefGoogle Scholar
  31. Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar Environ. Manag. Sci. Technol. Earthscan, London, pp 1–12Google Scholar
  32. Lombi E, Zhao FJ, Dunham SJ, McGrath SP (1999) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926CrossRefGoogle Scholar
  33. Lottermoser BG, Ashley PM, Munksgaard NC (2008) Biogeochemistry of Pb-Zn gossans, northwest Queensland, Australia: implications for mineral exploration and mine site rehabilitation. Appl Geochem 23:723–742. doi: 10.1016/j.apgeochem.2007.12.001 CrossRefGoogle Scholar
  34. Macías F, Calvo de Anta R (2009) Niveles genéricos de referencia de metales pesados y otros elementos traza en los suelos de Galicia. Xunta de Galicia, SpainGoogle Scholar
  35. Mench M, Lepp N, Bert V et al (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10:1039–1070. doi: 10.1007/s11368-010-0190-x CrossRefGoogle Scholar
  36. Misra V, Tiwari A, Shukla B, Seth CS (2009) Effects of soil amendments on the bioavailability of heavy metals from zinc mine tailings. Environ Monit Assess 155:467–475. doi: 10.1007/s10661-008-0449-5 CrossRefGoogle Scholar
  37. Nouri J, Khorasani N, Lorestani B et al (2009) Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ Earth Sci 59:315–323. doi: 10.1007/s12665-009-0028-2 CrossRefGoogle Scholar
  38. Novak JM, Busscher WJ, Laird DL et al (2009) Impact of biochar amendment on fertility of a Southeastern Coastal Plain soil. Soil Sci 174:105–112. doi: 10.1097/SS.0b013e3181981d9a CrossRefGoogle Scholar
  39. Novo LAB, Covelo EF, González L (2013a) The potential of Salvia verbenaca for phytoremediation of copper mine tailings amended with technosol and compost. Water Air Soil Pollut 224:1513. doi: 10.1007/s11270-013-1513-5 CrossRefGoogle Scholar
  40. Novo LAB, Covelo EF, González L (2013b) Phytoremediation of amended copper mine tailings with Brassica juncea. Int J Min Reclam Environ 27:215–226. doi: 10.1080/17480930.2013.779061 CrossRefGoogle Scholar
  41. Pardo T, Clemente R, Bernal MP (2011) Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Chemosphere 84:642–650. doi: 10.1016/j.chemosphere.2011.03.037 CrossRefGoogle Scholar
  42. Park JH, Lamb D, Paneerselvam P et al (2011) Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. J Hazard Mater 185:549–574. doi: 10.1016/j.jhazmat.2010.09.082 CrossRefGoogle Scholar
  43. Peijnenburg WJG, Jager T (2003) Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicol Environ Saf 56:63–77. doi: 10.1016/S0147-6513(03)00051-4 CrossRefGoogle Scholar
  44. Pérez-Esteban J, Escolástico C, Masaguer A, Moliner A (2012) Effects of sheep and horse manure and pine bark amendments on metal distribution and chemical properties of contaminated mine soils. Eur J Soil Sci 63:733–742. doi: 10.1111/j.1365-2389.2012.01468.x CrossRefGoogle Scholar
  45. Porta J (1986) Técnicas y experimentos en Edafología. Collegi Oficial D’Enginyers Agronoms de Catalunya, BarcelonaGoogle Scholar
  46. Puig CG, Álvarez-Iglesias L, Reigosa MJ, Pedrol N (2013) Eucalyptus globulus leaves incorporated as green manure for weed control in maize. Weed Sci 61:154–161. doi: 10.1614/WS-D-12-00056.1 CrossRefGoogle Scholar
  47. Purakayastha TJ, Viswanath T, Bhadraray S et al (2008) Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Int J Phytoremediation 10:61–72. doi: 10.1080/15226510701827077 CrossRefGoogle Scholar
  48. Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F (2006) Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63:918–925. doi: 10.1016/j.chemosphere.2005.09.051 CrossRefGoogle Scholar
  49. Sæbø A, Ferrini F (2006) The use of compost in urban green areas—a review for practical application. Urban For Urban Green 4:159–169CrossRefGoogle Scholar
  50. Salt DE, Smith RD, Raskin I (1998) Phytoremediaton. Annu Rev Plant Physiol Plant Mol Biol 49:643–668CrossRefGoogle Scholar
  51. Shrestha RK, Lal R (2008) Land use impacts on physical properties of 28 years old reclaimed mine soils in Ohio. Plant Soil 306:249–260. doi: 10.1007/s11104-008-9578-4 CrossRefGoogle Scholar
  52. Shu WS, Ye ZH, Zhang ZQ et al (2005) Natural colonization of plants on five lead/zinc mine tailings in southern China. Restor Ecol 13:49–60. doi: 10.1111/j.1526-100X.2005.00007.x CrossRefGoogle Scholar
  53. Singh SK, Ramprakash, Kumari S, Duhan BS (2013) Phytoextraction of Ni from contaminated soil by Brassica juncea as influenced by chelating agents. Ann Biol 29:15–18Google Scholar
  54. Sneath HE, Hutchings TR, de Leij FAAM (2013) Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil. Environ Pollut 178:361–366. doi: 10.1016/j.envpol.2013.03.009 CrossRefGoogle Scholar
  55. Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82. doi: 10.1016/S0065-2113(10)05002-9
  56. Solís-Dominguez FA, White SA, Hutter TB et al (2012) Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: effect of plant species. Environ Sci Technol 46:1019–1027. doi: 10.1021/es202846n CrossRefGoogle Scholar
  57. Tordoff GM, Baker AJ, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228CrossRefGoogle Scholar
  58. USDA Natural Resources Conservation Service (USDA-NRCS) (1998) Soil quality indicators: pH. Soil quality information sheetGoogle Scholar
  59. Vega FA, Covelo EF, Andrade ML (2005) Limiting factors for reforestation of mine spoils from Galicia (Spain). Land Degrad Dev 16:27–36. doi: 10.1002/ldr.642 CrossRefGoogle Scholar
  60. Wuest SB, Albrecht SL, Skirvin KW (2000) Crop residue position and interference with wheat seedling development. Soil Tillage Res 55:175–182. doi: 10.1016/S0167-1987(00)00116-1 CrossRefGoogle Scholar
  61. Yang S, Cao J, Hu W et al (2013) An evaluation of the effectiveness of novel industrial by-products and organic wastes on heavy metal immobilization in Pb-Zn mine tailings. Environ Sci Process Impacts 15:2059–2067. doi: 10.1039/c3em00338h CrossRefGoogle Scholar
  62. Yin Chan K, Xu Z (2009) Biochar: nutrient properties and their enhancement. In: Lehmann J, Joseph S (eds) Biochar Environ Manag Sci Technol. Earthscan, London, pp 67-84Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alfonso Rodríguez-Vila
    • 1
  • Emma F. Covelo
    • 1
  • Rubén Forján
    • 1
  • Verónica Asensio
    • 1
  1. 1.Department of Plant Biology and Soil Science, Faculty of BiologyUniversity of VigoVigoSpain

Personalised recommendations