Environmental Science and Pollution Research

, Volume 22, Issue 7, pp 4863–4872 | Cite as

The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot from a diesel engine at a particular running condition

  • A. Tapia
  • M. S. Salgado
  • M. P. Martín
  • J. Sánchez-Valdepeñas
  • M. J. Rossi
  • B. Cabañas
Atmospheric Pollutants in a Changing Environment

Abstract

Two gases, O3 and NO2, were selected to probe the surface of a diesel fuel combustion aerosol sample, diesel soot, and amorphous carbon nanoparticles (PRINTEX XE2-B) using heterogeneous (i.e., gas-surface reactions). The gas uptake to saturation of the probes was measured under molecular flow conditions using a Knudsen flow reactor in order to quantify and characterize surface functional groups. Specifically, O3 and NO2 are used for the titration of oxidizable groups. Diesel soot samples interacted with the probe gases to various extents which points to the coexistence of different functional groups on the same aerosol surface such as reduced groups. The carbonaceous particles displayed significant differences: PRINTEX XE2-B amorphous carbon had a significantly lower surface functional group density of both total and strongly reducing groups despite its significantly larger internal surface area, compared to diesel soot. The uptake kinetics of the gas-phase probe molecules (uptake probabilities) were also measured in order to obtain further information on the reactivity of emitted soot aerosols in order to enable the potential prediction of health effects.

Keywords

Surface composition Interfacial properties Diesel soot Amorphous carbon PRINTEX XE2-B, O3, NO2 O3 NO2 Uptake coefficients Heterogeneous reactions 

Notes

Acknowledgment

This work was supported by project COST CM0901 detailed chemical kinetic models for cleaner combustion.

References

  1. Baulig A, Sourdeval M, Meyer M, Marano F, Baeza-Squiban A (2003) Biological effects of atmospheric particles on human bronchial epithelial cells. Toxicol in Vitro 17:567–573CrossRefGoogle Scholar
  2. Berg JM, Shu H, Hwang W, Zebda R, Cummins K, Soriaga MP, Taylor R, Guo B, Sayes CM (2010) Internalization of carbon black and maghemite iron oxide nanoparticle mixtures leads to oxidant production. Chem Res Toxicol 23:1874.1882CrossRefGoogle Scholar
  3. Boehm HP (2002) Surface oxides on carbon and their analysis: a critical assessment. Carbon 40:145–49CrossRefGoogle Scholar
  4. Boehman AL, Song J, Alam M (2005) Impact of biodiesel blending on diesel soot and the regeneration of particulate filters. Energ Fuel 19:1857–1864CrossRefGoogle Scholar
  5. Braun A, Shah N, Huggins FE, Kelly KE, Sarofim A, Jacobsen C, Wirick S, Francis H, Ilavsky J, Thomas GE, Huffman GP (2005) X-ray scattering and spectroscopy studies on diesel soot from oxygenated fuel under various engine load conditions. Carbon 43:2588–2599CrossRefGoogle Scholar
  6. Cain JP, Gassmn PL, Wang H, Laskin A (2010) Micro-FTIR study of soot chemical composition-evidence of aliphatic hydrocarbons on nascent soot surfaces. Phys Chem Chem Phys 12:5206–5218CrossRefGoogle Scholar
  7. Caloz F, Fenter FF, Tabor KD, Rossi MJ (1997) Paper I: Design and construction of a Knudsen-cell reactor for the study of heterogeneous reactions over the temperature range 130-750 K: Performances and limitations. Rev Sci Instrum 68(8): 3172--3179Google Scholar
  8. Davidson CJ, Phalen RF, Solomon PA (2005) Airborne particulate matter and human health. Aerosol Sci Tech 39:737–749CrossRefGoogle Scholar
  9. Dorado MP, Ballesteros E, Arnal JM, Gómez J, López FJ (2003) Exhaust emissions from a diesel engine fueled with transesterified waste olive oil. Fuel 82(11):1311–1315CrossRefGoogle Scholar
  10. Gaffney JS, Marley NA (2009) The impacts of combustion emission on air quality—from coal and biofuels and beyond. Atmos Environ 43:23–36CrossRefGoogle Scholar
  11. Giordana A, Maranzana A, Ghigo G, Causà M, Tonachini G (2008) Soot platelets and PAHs with an odd number of unsaturated carbon atoms and π electrons: theoretical study of their spin properties and interaction with ozone. J Phys Chem A 112(5):973–982CrossRefGoogle Scholar
  12. Giordana A, Maranzana A, Ghigo G, Causà M, Tonachini G (2011) Border reactivity of polycyclic aromatic hydrocarbons and soot platelets toward ozone A theoretical study. J Phys Chem A 115(4):470–481CrossRefGoogle Scholar
  13. Graboski MS, McCormick RL (1998) Combustion of fat and vegetable oil derived fuels in diesel engines. Prog in Energ Combus 24:125–164CrossRefGoogle Scholar
  14. Harley RA, Marr LC, Lehner JK, Giddings SN (2005) Changes in motor vehicle emissions on diurnal to decadal time scales and effects on atmospheric composition. Environ Sci Tech 39(14):5356–5362CrossRefGoogle Scholar
  15. Lapuerta M, Armas O, Ballesteros R (2002) Diesel particulate emissions from biofuels derived from Spanish vegetable oils. SAE paper 2002-01-1657:1–7.Google Scholar
  16. Monge ME, D’Anna D, Mazri L, Giroir-Fendler A, Ammann M, Donaldson DJ, George C (2010) Light changes the atmospheric reactivity of soot. PNAS,107 (15): 6605–6609.Google Scholar
  17. Muckenhuber H, Grothe H (2006) The heterogeneous reaction between soot and NO2 at elevated temperature. Carbon 44:546–559CrossRefGoogle Scholar
  18. Muckenhuber H, Grothe H (2007) A DRIFTS study of the heterogeneous reaction of NO2 with carbonaceous materials at elevated temperature. Carbon 45(2):321–329CrossRefGoogle Scholar
  19. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8):1731–1742CrossRefGoogle Scholar
  20. Salgado MS, Rossi MJ (2002) Flame soot generated under controlled combustion conditions: heterogeneous reaction of NO2 on hexane soot. Int J Chem Kinet 34(11):620–631CrossRefGoogle Scholar
  21. Setyan A (2009) University of Lausanne, Faculté de biologie et de medicine, Institut universitaire romand de Santé au Travail (IST). PhD thesis. https://serval.unil.ch/resource/serval:BIB_51D481F0F365.P001/REF
  22. Setyan A, Sauvain JJ, Riediker M, Guillemin M, Rossi MJ (2009a) Characterization of surface functional groups present on laboratory-generated and ambient aerosol particles by means of heterogeneous titration reactions. J Aerosol Sci 40:534–548CrossRefGoogle Scholar
  23. Setyan A, Sauvain JJ, Rossi MJ (2009b) The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot and TiO2 nanoparticles. Phys Chem Chem Phys 11:6205–6217CrossRefGoogle Scholar
  24. Setyan A, Sauvain JJ, Guillemin M, Riediker M, Demirdjian B, Rossi MJ (2010) Probing functional groups at the gas-aerosol interface using heterogeneous titration reactions a tool for predicting health effects? ChemPhysChem 11:3823–3835CrossRefGoogle Scholar
  25. Steiner S, Czerwinski J, Comte P, Popovicheva O, Kireeva E, Müller L, Heeb N, Mayer A, Fink A, Rothen-Rutishauser B (2013) Comparison of the toxicity of diesel exhaust produced by bio- and fossil diesel combustion in human lung cells in vitro. Atmos Environ 81:380–388CrossRefGoogle Scholar
  26. Stratakis GA, Stamatelos AM (2003) Thermogravimetric analysis of soot emitted by a modern diesel engine run on catalyst-doped fuel. Combust Flame 132:157–169CrossRefGoogle Scholar
  27. Tabor K, Gutzwiller L, Rossi MJ (1994) Heterogeneous chemical kinetics of NO2 on amorphous carbon at ambient temperature. J Phys Chem 98:6172–6186CrossRefGoogle Scholar
  28. Wang WG, Lyons DW, Clark NN, Gautam M, Norton PM (2000) Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification. Environ Sci Tech 34(6):933–939CrossRefGoogle Scholar
  29. Wentzel M, Gorzawski H, Naumann K-H, Saatho H, Weinbruch S (2003) Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. Aerosol Sci 34:1347–1370CrossRefGoogle Scholar
  30. Weast RC, Lide DR (1989) CRC Handbook of Chemistry and Physics. CRC Press Inc, Boca Raton FL, 70th ednGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Tapia
    • 1
  • M. S. Salgado
    • 1
  • M. P. Martín
    • 1
  • J. Sánchez-Valdepeñas
    • 2
  • M. J. Rossi
    • 3
  • B. Cabañas
    • 1
  1. 1.Departamento de Química Física Facultad de Ciencias QuímicasUniversidad de Castilla La ManchaCiudad RealSpain
  2. 2.Grupo de Combustibles y Motores Escuela Técnica Superior de Ingenieros IndustrialesUniversidad de Castilla La ManchaCiudad RealSpain
  3. 3.Labor für Atmosphärenchemie (LAC)Paul Scherrer Institut (PSI)Villigen PSISwitzerland

Personalised recommendations