Environmental Science and Pollution Research

, Volume 21, Issue 18, pp 11017–11026 | Cite as

Impact of clay mineral on air oxidation of PAH-contaminated soils

  • Coralie Biache
  • Olivier Kouadio
  • Catherine Lorgeoux
  • Pierre Faure
Research Article


This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2.


PAH Polycyclic aromatic compound (PAC) Oxygenated PAC Low temperature oxidation Clay mineral Remediation treatment Bentonite 



We thank the GISFI (French Scientific Interest Group-Industrial Wasteland (http://www.gisfi.prd.fr). We are also grateful to Angelina Razafitianamaharavo for the specific area determination of the bentonite. We thank Dr. Pranay Morajkar for proofreading and language correction.

Supplementary material

11356_2014_2966_MOESM1_ESM.pdf (64 kb)
ESM1 (PDF 63 kb)


  1. Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, San DiegoGoogle Scholar
  2. Benhabib K, Faure P, Sardin M, Simonnot M-O (2010) Characteristics of a solid coal tar sampled from a contaminated soil and of the organics transferred into water. Fuel 89(2):352–359CrossRefGoogle Scholar
  3. Benhabib K, Simonnot M-O, Sardin M (2006) PAHs and organic matter partitioning and mass transfer from coal tar particles to water. Environ Sci Technol 40(19):6038–6043CrossRefGoogle Scholar
  4. Biache C, Ghislain T, Faure P, Mansuy-Huault L (2011) Low temperature oxidation of a coking plant soil organic matter and its major constituents: An experimental approach to simulate a long term evolution. J Hazard Mater 188(1–3):221–230. doi: 10.1016/j.jhazmat.2011.01.102 CrossRefGoogle Scholar
  5. Biache C, Mansuy-Huault L, Faure P, Munier-Lamy C, Leyval C (2008) Effects of thermal desorption on the composition of two coking plant soils: impact on solvent extractable organic compounds and metal bioavailability. Environ Pollut 156(3):671–677CrossRefGoogle Scholar
  6. Birkel U, Gerold G, Niemeyer J (2002) Abiotic reactions of organics on clay mineral surfaces. In: Violante A, Huang PM, Bollag JM, Gianfreda L (eds) Developments in soil science, vol Volume 28, Part A. Elsevier, pp 437–447. doi: 10.1016/S0166-2481(02)80067-8
  7. Blanchart P, Faure P, Bruggeman C, De Craen M, Michels R (2012) In situ and laboratory investigation of the alteration of Boom Clay (Oligocene) at the air–geological barrier interface within the Mol underground facility (Belgium): consequences on kerogen and bitumen compositions. Appl Geochem 27 (12):2476–2485. doi: 10.1016/j.apgeochem.2012.07.016
  8. Calemma V, Rausa R, Margarit R, Girardi E (1988) FT-i.r. study of coal oxidation at low temperature. Fuel 67(6):764–770CrossRefGoogle Scholar
  9. Choi H, Thiruppathiraja C, Kim S, Rhim Y, Lim J, Lee S (2011) Moisture readsorption and low temperature oxidation characteristics of upgraded low rank coal. Fuel Process Technol 92 (10):2005–2010. doi: 10.1016/j.fuproc.2011.05.025
  10. Elie M, Faure P, Michels R, Landais P, Griffault L (2000) Natural and laboratory oxidation of low-organic-carbon-content sediments: comparison of chemical changes in hydrocarbons. Energy Fuels 14(4):854–861CrossRefGoogle Scholar
  11. Faure P, Jeanneau L, Lannuzel F (2006a) Analysis of organic matter by flash pyrolysis-gas chromatography–mass spectrometry in the presence of Na-smectite: When clay minerals lead to identical molecular signature. Org Geochem 37 (12):1900–1912. doi: 10.1016/j.orggeochem.2006.09.008
  12. Faure P, Landais P (2000) Evidence for clay minerals catalytic effects during low-temperature air oxidation of n-alkanes. Fuel 79(14):1751–1756CrossRefGoogle Scholar
  13. Faure P, Landais P, Griffault L (1999) Behavior of organic matter from Callovian shales during low-temperature air oxidation. Fuel 78(13):1515–1525CrossRefGoogle Scholar
  14. Faure P, Schlepp L, Burkle-Vitzthum V, Elie M (2003) Low temperature air oxidation of n-alkanes in the presence of Na-smectite. Fuel 82(14):1751–1762CrossRefGoogle Scholar
  15. Faure P, Schlepp L, Mansuy-Huault L, Elie M, Jardé E, Pelletier M (2006b) Aromatization of organic matter induced by the presence of clays during flash pyrolysis-gas chromatography–mass spectrometry (PyGC–MS): a major analytical artifact. Journal of Analytical and Applied Pyrolysis 75 (1):1–10. doi: 10.1016/j.jaap.2005.02.004
  16. Forsey SP, Thomson NR, Barker JF (2010) Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate. Chemosphere 79 (6):628–636. doi: 10.1016/j.chemosphere.2010.02.027
  17. Ghislain T, Faure P, Biache C, Michels R (2010) Low-temperature, mineral-catalyzed air oxidation: a possible new pathway for PAH stabilization in sediments and soils. Environ Sci Technol 44(22):8547–8552. doi: 10.1021/es102832r CrossRefGoogle Scholar
  18. Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84CrossRefGoogle Scholar
  19. Keith LH, Telliard WA (1979) Priority pollutants: I. A perspective view. Environ Sci Technol 13(4):416–423CrossRefGoogle Scholar
  20. Laurent F, Cébron A, Schwartz C, Leyval C (2012) Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties. Chemosphere 86(6):659–664. doi: 10.1016/j.chemosphere.2011.11.018 CrossRefGoogle Scholar
  21. Lee B-D, Iso M, Hosomi M (2001) Prediction of Fenton oxidation positions in polycyclic aromatic hydrocarbons by Frontier electron density. Chemosphere 42(4):431–435CrossRefGoogle Scholar
  22. Michels R, Landais P, Gerard L, Kister J (1993) Elimination des fonctions oxygénées lors de la maturation thermique d’un charbon oxydé artificiellement = Removal of the oxygenated functions during thermal maturation of an artificially oxidized coal. CR Acad Sci, Ser II 316:1375–1381Google Scholar
  23. USEPA (1999) Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites. USEPA, Office of Solid Waste and Emergency Response: Washington (DC),Google Scholar
  24. Usman M, Faure P, Hanna K, Abdelmoula M, Ruby C (2012a) Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination. Fuel 96 (0):270–276. doi: 10.1016/j.fuel.2012.01.017
  25. Usman M, Faure P, Ruby C, Hanna K (2012b) Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils. Chemosphere 87 (3):234–240. doi: 10.1016/j.chemosphere.2012.01.001
  26. Usman M, Faure P, Ruby C, Hanna K (2012c) Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation. Applied Catalysis B: Environmental 117–118 (0):10–17. doi: 10.1016/j.apcatb.2012.01.007
  27. Woo OT, Chung WK, Wong KH, Chow AT, Wong PK (2009) Photocatalytic oxidation of polycyclic aromatic hydrocarbons: Intermediates identification and toxicity testing. J Hazard Mater 168 (2–3):1192–1199. doi: 10.1016/j.jhazmat.2009.02.170
  28. Wu MM, Robbins GA, Winschel RA, Burke FP (1988) Low-temperature coal weathering: its chemical nature and effects on coal properties. Energy Fuels 2(2):150–157CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Coralie Biache
    • 1
    • 2
  • Olivier Kouadio
    • 1
    • 2
  • Catherine Lorgeoux
    • 3
    • 4
  • Pierre Faure
    • 1
    • 2
  1. 1.Université de Lorraine, LIEC, UMR7360Vandœuvre-lès-NancyCedexFrance
  2. 2.LIEC, Faculté des Sciences et TechniquesVandoeuvre-lès-NancyCedexFrance
  3. 3.Université de Lorraine, GeoRessources, UMR7359Vandœuvre-lès-NancyCedexFrance
  4. 4.CNRS, GeoRessources, UMR7359Vandœuvre-lès-NancyCedexFrance

Personalised recommendations