Advertisement

Environmental Science and Pollution Research

, Volume 21, Issue 21, pp 12129–12134 | Cite as

Treatment of a wastewater from a pesticide manufacture by combined coagulation and Fenton oxidation

  • G. Pliego
  • J. A. Zazo
  • M. I. Pariente
  • I. Rodríguez
  • A. L. Petre
  • P. Leton
  • J. García
Advanced oxidation processes for environmental protection

Abstract

The treatment of a non-biodegradable agrochemical wastewater has been studied by coupling of preliminary coagulation—flocculation step and further Fenton oxidation. High percentages of chemical oxygen demand (COD) removal (up to 58 %) were achieved in a first step using polyferric chloride as coagulant. This reduced significantly the amount of H2O2 required in the further Fenton oxidation. Using the stoichiometric amount relative to COD around 80 % of the remaining organic load was mineralized. The combined treatment allowed achieving the regional discharge limits of ecotoxicity at a cost substantially lower than the solution used so far where these wastewaters are managed as hazardous wastes.

Keywords

Advanced oxidation processes Coagulation–flocculation Fenton process Phenol Aquatic toxicity 

Notes

Acknowledgments

This work has been financed by the Dirección General de Universidades e Investigación de la Comunidad de Madrid, Research Network REMTAVARES (S0505/AMB-0395 and S2009/AMB-1588).

References

  1. Amat AM, Arques A, Garcia-Ripoll A, Santos-Juanes L, Vicente R, Oller I, Maldonado MI, Malato S (2009) A reliable monitoring of the biocompatibility of an effluent along an oxidative pre-treatment by sequential bioassays and chemical analyses. Water Res 43:784–792CrossRefGoogle Scholar
  2. Blanco A, Fuente E, Negro C, Tijero J (2002) Flocculation monitoring: focused beam reflectance measurement as a measurement tool. Can J Chem Eng 80:734–740Google Scholar
  3. Cañizares P, Paz R, Sáez C, Rodrigo MA (2009) Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. J Environ Manag 1:410–420CrossRefGoogle Scholar
  4. DeLorenzo ME, Scott GI, Ross PE (2001) Toxicity of pesticides to aquatic microorganisms: a review. Environ Toxicol Chem 20:84–98CrossRefGoogle Scholar
  5. Duan J, Gregory J (2003) Coagulation by hydrolyzing metal salts. Adv Colloid Interf 100–102:475–502CrossRefGoogle Scholar
  6. Eisenberg GM (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem Anal 15:327–328CrossRefGoogle Scholar
  7. Gao BY, Wang Y, Yue QY, Wei JC, Li Q (2008) The size and coagulation behavior of a novel composite inorganic-organic coagulant. Sep Purif Technol 62:544–552CrossRefGoogle Scholar
  8. Ginos A, Manios T, Mantzavinos D (2006) Treatment of olive mill effluents by coagulation−flocculation−hydrogen peroxide oxidation and effect on phytotoxicity. J Hazard Mater 1–3:135–142CrossRefGoogle Scholar
  9. Gutierrez M, Etxebarria J, de las Fuentes L (2002) Evaluation of wastewater toxicity: comparative study between Microtox and activated sludge oxygen uptake inhibition. Water Res 36:919–924CrossRefGoogle Scholar
  10. Farré MJ, Franch MI, Ayllón JA, Peral J, Domènech X (2007) Biodegradability of treated aqueous solutions of biorecalcitrant pesticides by means of photocatalytic ozonation. Desalination 211:22–33CrossRefGoogle Scholar
  11. Köck M, Farré M, Martínez E, Gajda-Schrantz K, Ginebreda A, Navarro A, López de Alda M, Barceló D (2010) Integrated ecotoxicological and chemical approach for the assessment of pesticide pollution in the Ebro River delta (Spain). J Hydrol 383:73–82CrossRefGoogle Scholar
  12. Leiknes TO (2009) The effect of coupling coagulation and flocculation with membrane filtration in water treatment: a review. J Environ Sci 21:8–12CrossRefGoogle Scholar
  13. Moussas PA, Zouboulis AI (2009) A new inorganic-organic composite coagulant, consisting of Polyferric Sulphate (PFS) and Polyacrylamide (PAA). Water Res 43:3511–3524CrossRefGoogle Scholar
  14. Perdigon-Melon JA, Carbajo JB, Petre AL, Rosal R, Garcia-Calvo E (2010) Coagulation-Fenton coupled treatment for ecotoxicity reduction in highly polluted industrial wastewater. J Hazard Mater 1–3:127–132CrossRefGoogle Scholar
  15. Persoone G, Marsalek B, Blinova I, Törökne A, Zarina D, Manusadžianas L, Nalecz-Jawecki G, Tofan L, Stepanova N, Tothova L, Kolar B (2003) A practical and user-friendly toxicity classification system with Microbiotests for natural waters and wastewaters. Environ Toxicol 18:395–402CrossRefGoogle Scholar
  16. Pliego G, Zazo JA, Blasco S, Casas JA, Rodriguez JJ (2012) Treatment of highly polluted hazardous industrial wastewaters by combined coagulation−adsorption and high-temperature Fenton oxidation. Ind Eng Chem Res 51:2888–2896CrossRefGoogle Scholar
  17. Power EA, Boumphrey RS (2004) International trends in bioassay use for effluent management. Ecotoxicology 13:377–398CrossRefGoogle Scholar
  18. Rizzo L (2011) Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res 45:4311–4340CrossRefGoogle Scholar
  19. Zapata A, Velegraki T, Sánchez-Pérez JA, Mantzavinos D, Maldonado MI, Malato S (2009) Solar photo-Fenton treatment of pesticides in water: effect of iron concentration on degradation and assessment of ecotoxicity and biodegradability. Appl Catal B Environ 3–4:448CrossRefGoogle Scholar
  20. Weber WJ Jr (1972) Physicochemical processes for water quality control. Wiley Interscience, New YorkGoogle Scholar
  21. Wang Y, Gao B, Yue Q, Wei J, Li Q (2008) The characterisation and flocculation efficiency of composite flocculant iron salts-polydimetrhyldiallylammonium chloride. Chem Eng J 142:175–181CrossRefGoogle Scholar
  22. Xing Z, Sun D (2009) Treatment of antibiotic fermentation wastewater by combined polyferric sulfate coagulation, Fenton and sedimentation process. J Hazard Mater 2–3:1264–1268CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • G. Pliego
    • 1
  • J. A. Zazo
    • 1
  • M. I. Pariente
    • 2
  • I. Rodríguez
    • 2
  • A. L. Petre
    • 3
  • P. Leton
    • 3
  • J. García
    • 4
  1. 1.Chemical EngineeringUniversity Autonoma of MadridMadridSpain
  2. 2.Chemical and Environmental TechnologyRey Juan Carlos UniversityMóstolesSpain
  3. 3.Department of Analytical Chemistry, Physical Chemistry and Chemical EngineeringUniversity of AlcaláAlcalá de HenaresSpain
  4. 4.Chemical EngineeringUniversity Complutense of MadridMadridSpain

Personalised recommendations