Environmental Science and Pollution Research

, Volume 21, Issue 16, pp 9995–10012 | Cite as

A diagnostic evaluation of modeled mercury wet depositions in Europe using atmospheric speciated high-resolution observations

  • J. BieserEmail author
  • F. De Simone
  • C. Gencarelli
  • B. Geyer
  • I. Hedgecock
  • V. Matthias
  • O. Travnikov
  • A. Weigelt
Research Article


This study is part of the Global Mercury Observation System (GMOS), a European FP7 project dedicated to the improvement and validation of mercury models to assist in establishing a global monitoring network and to support political decisions. One key question about the global mercury cycle is the efficiency of its removal out of the atmosphere into other environmental compartments. So far, the evaluation of modeled wet deposition of mercury was difficult because of a lack of long-term measurements of oxidized and elemental mercury. The oxidized mercury species gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) which are found in the atmosphere in typical concentrations of a few to a few tens pg/m3 are the relevant components for the wet deposition of mercury. In this study, the first European long-term dataset of speciated mercury taken at Waldhof/Germany was used to evaluate deposition fields modeled with the chemistry transport model (CTM) Community Multiscale Air Quality (CMAQ) and to analyze the influence of the governing parameters. The influence of the parameters precipitation and atmospheric concentration was evaluated using different input datasets for a variety of CMAQ simulations for the year 2009. It was found that on the basis of daily and weekly measurement data, the bias of modeled depositions could be explained by the bias of precipitation fields and atmospheric concentrations of GOM and PBM. A correction of the modeled wet deposition using observed daily precipitation increased the correlation, on average, from 0.17 to 0.78. An additional correction based on the daily average GOM and PBM concentration lead to a 50 % decrease of the model error for all CMAQ scenarios. Monthly deposition measurements were found to have a too low temporal resolution to adequately analyze model deficiencies in wet deposition processes due to the nonlinear nature of the scavenging process. Moreover, the general overestimation of atmospheric GOM by the CTM in combination with an underestimation of low precipitation events in the meteorological models lead to a good agreement of total annual wet deposition besides the large error in weekly deposition estimates. Moreover, it was found that the current speciation profiles for GOM emissions are the main factor for the overestimation of atmospheric GOM concentrations and might need to be revised in the future. The assumption of zero emissions of GOM lead to an improvement of the mean normalized bias for three-hourly observations of atmospheric GOM from 9.7 to 0.5, Furthermore, the diurnal correlation between model and observation increased from 0.01 to 0.64. This is a strong indicator that GOM is not directly emitted from primary sources but is mainly created by oxidation of GEM.


Chemistry transport model GEM, GOM, PBM, RGM Wet and dry deposition Mercury CMAQ 



We want to thank Elke Bieber from the German Umwelt Bundesamt (UBA) and Andreas Schwerin from the Waldhof station for their support and the various measurement data used in this publication. Further, our thanks go to Andreas Weigelt, who operates the Tekran instruments at Waldhof. Moreover, we thank EMEP for the various European measurement data. Finally, we acknowledge the climate dataset from the EU-FP6 project ENSEMBLES ( and the data providers in the ECA&D project ( Finally, we want to thank Franz Slemr for fruitful discussions on the topic.

Supplementary material

11356_2014_2863_MOESM1_ESM.pdf (1.3 mb)
Figure S1 Comparison of monthly CCLM precipitation fields with observations (PDF 1315 kb)
11356_2014_2863_MOESM2_ESM.pdf (1.2 mb)
Figure S2 Comparison of monthly WRF precipitation fields with observation (PDF 1191 kb)


  1. Aas, W., (ed.) (2006). Data quality 2004, quality assurance, and field comparisons. EMEP/CCC Report 4/2006, Norwegian Institute for Air Research (NILU), NorwayGoogle Scholar
  2. Amos HM, Jacob DJ, Holmes CD, Fisher JA, Wang Q, Yantosca RM, Corbitt ES, Galarneau E, Rutter AP, Gustin MS, Steffen A, Schauer JJ, Graydon JA, St. Louis VL, Talbot RW, Edgerton ES, Zhang Y, Sunderland EM (2012) Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition Atmos. Chem Phys 12:591–603. doi: 10.5194/acp-12-591-2012 Google Scholar
  3. Amos HM, Jacob DJ, Streets DG, Sunderland EM (2013) Legacy of all-time anthropogenic emissions on the global mercury cycle. Glob Biogeochem Cycles 27(2):410–421. doi: 10.1002/gbc.20040 CrossRefGoogle Scholar
  4. Baker KR, Bash JO (2012) Regional scale photochemical model evaluation of total mercury wet deposition and speciated ambient mercury. Atmos Environ 49:151–162CrossRefGoogle Scholar
  5. Bash JO (2010) Description and initial simulation of a dynamic bidirectional air-surface exchange model for mercury in Community Multiscale Air Quality (CMAQ) model. JO Bash J Geophys Res 115(D6), D06305Google Scholar
  6. Bieser J, Aulinger A, Matthias V, Quante M, Builtjes P (2011a) SMOKE for Europe—adaptation, modification and evaluation of a comprehensive emission model for Europe. Geosci Model Dev 4(1–22):2011. doi: 10.5194/gmd-4-1-2011 Google Scholar
  7. Bieser J, Aulinger A, Matthias V, Quante M, Denier van der Gon HAC (2011b) Vertical emission profiles for Europe based on plume rise calculations. Environ Pollut 159:2935–2946. doi: 10.1016/j.envpol.2011.04.030 CrossRefGoogle Scholar
  8. Bullock OR Jr, Brehme KA (2002) Atmospheric mercury simulation using the CMAQ model: formulation description an analysis of wet deposition results. Atmos Environ 36:2135–2146CrossRefGoogle Scholar
  9. Bullock OR, Atkinson D, Braverman T, Civolo K, Dastoot A, Davignon D, Ku JY, Lohmann K, Myers TC, Park RJ, Seigneur C, Selin NE, Sistla G, Vijayaraghavan K (2008) The North American Mercury Model Intercomparison Study (NAMMIS): study description and meodel-to-model comparisons. J Geophys Res Atmos 133:D17Google Scholar
  10. Bullock OR, Atkinson D, Braverman T, Civolo K, Dastoot A, Davignon D, Ku JY, Lohmann K, Myers TC, Park RJ, Seigneur C, Selin NE, Sistla G, Vijayaraghavan K (2009) An analysis of simulated wet deposition of mercury from the North American Mercury Model Intercomparison Study. J Geophys Res Atmos 14, D08301Google Scholar
  11. Byun DW, Ching JKS (1999) Science algorithms of the EPA models-3 Community Multiscale Air Quality (CMAQ) modeling system. EPA-600/R-99/030, US Environmental Protection Agency, US Government Printing Office, Washington, DCGoogle Scholar
  12. Calvert JG, Lindberg SE (2005) Mechanisms of mercury removal by O3 and OH in the atmosphere. Atmos Environ 39:3355–3367CrossRefGoogle Scholar
  13. CCC, (2013). Online resource: accessed on: May 2013
  14. Dennis R, Fox T, Fuentes M, Gilliland A, Hanna S, Hogrefe C, Irwin J, Rao ST, Scheffe R, Schere K, Steyn D, Venkatram A (2010) A framework for evaluationg regional-scale numerical photochemical modeling system. Environ Fluid Mech (Dordr) 10(4):471–489. doi: 10.1007/s10652-009-9163-2 CrossRefGoogle Scholar
  15. De Simone F, Gencarelli CN, Hedgeckock IM, Pirrone N (2014) Global atmospheric cycle of mercury: a model study on the impact of oxidation mechanisms. Environ Sci Pollut Res 21(6):4110–4123Google Scholar
  16. ECE (Economic Commission for Europe), Pirrone, N., Keating, T. (Editors), (2010). Hemispheric transport of air pollution. Part- B: Mercury, United Nations, New York and GenevaGoogle Scholar
  17. Gay DA, Schmeltz D, Prestbo E, Olson M, Sharac T, Tordon R (2013) The Atmospheric mercury network: measurement and initial examination of an ongoing atmospheric mercury record across North America. ACPD 13:10521–10546Google Scholar
  18. Granier, C.; Lamarque, J.; Mieville, A.; Muller, J.; Olivier, J.; Orlando, J.; Peters, J.; Petron, G.; Tyndall, G. & Wallens, S. (2005), 'POET, a database of surface emissions of ozone precursors',
  19. Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones, M. New. (2008). A European daily high-resolution gridded dataset of surface temperature and precipitation JGRGoogle Scholar
  20. Houyoux, M. R., Vukovich, J. M., Coats Jr., C. J., et. al., (2000). Emission inventory development and processing for the I-31 Seasonal Model for Regional Air Quality (SMRAQ) project. Journal of Geophysical Research. v105 iD7, 9079-9090, 2000Google Scholar
  21. Jung G, Hedgecock I, Pirrone N (2009) ECHMERIT V1.0—a new global fully coupled mercury-chemistry and transport model. Geosci Model Dev 2:175–195CrossRefGoogle Scholar
  22. Kos G, Ryzhkov A, Dastoor A, Narayan J, Steffen A, Ariya PA, Zhang L (2013) Evaluation of discrepancy between measured and modelled oxidized mercury species. Atmos Chem Phys 13:4839–4863CrossRefGoogle Scholar
  23. Kuss J, Schneider B (2007) Variability of the gaseous elemental mercury sea-air flux of the Baltic Sea. Environ Sci Technol 41:8018–8023CrossRefGoogle Scholar
  24. Kvietkus K., (1995), Investigation of the gaseous and particulate mercury concentrations along horizontal and vertical profiles in the lower troposphere. In: Anttila, P., Kämäri, J., Tolvanen, M. (Eds.), Proceedings of the 10th World Clean Air Congress. Espoo, Finland, May 28–June 2, p. 284Google Scholar
  25. Lohman K, Seigneur C, Edgerton E, Jansen J (2006) Modeling mercury in power plant plumes. Environ Sci Technol 40:3848–3854CrossRefGoogle Scholar
  26. Matthias, V., (2008). The aerosol distribution in Europe derived with the Community Multiscale Air Quality (CMAQ) model: comparison to near surface in situ and sunphotometer measurements (2008). Atmos. Chem. Phys. 8, 5077–5097,
  27. Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and W. Wang, (2004). "The weather reseach and forecast model: software architecture and performance," to appear in proceedings of the 11th ECMWF Workshop on the Use of High Performance Computing In Meteorology, 25-29 October 2004, Reading U.K. Ed. George MozdzynskiGoogle Scholar
  28. NEN-EN 15853 (en), (2010). Ambient air quality—standard method for the determination of mercury deposition. ICS 13.040.20, June 2010Google Scholar
  29. Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S (2006) Global anthropogenic mercury emission inventory for 2000. Atmos Environ 40(22):4048–4063CrossRefGoogle Scholar
  30. Passant NR (2002) Speciation of UK emissions of non-methane volatile organic compunds. AEA Technology Report AEAT/ENV/R/0540 Issue 1, CulhamGoogle Scholar
  31. Peters, J. A. H. W. & Olivier, J. G. J. (2003), 'EDGAR3/POET Enussuibs; 1997 emissions and scenarios for 1995–2020; Technical background infromation on global and regional sectoral emissions', RIVM, Bilthoven, report no. 773301003Google Scholar
  32. Rockel B, Geyer B (2008) The performance of the regional climate model CLM in different climate regions, based on the example of precipitation. Meteorologische Zeitschrift Band 17. Heft 4:487–498Google Scholar
  33. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17:347–248CrossRefGoogle Scholar
  34. Roeckner, E.; Bдuml, G.; Bonaventura, L.; Brokopf, R.; Esch, M.; Giorgetta, M.; Hagemann, S.; Kirchner, I.; Kornblueh, L.; Manzini, E.; Rhodin, A.; Schlese, U.; Schulzweida, U. & A., T. (2003), 'The atmospheric general circulation model ECHAM 5. PART I: model description', Technical report, Max Planck Institute for Meteorology (MPI-M), Hamburg, Germany, MPI-Report No. 349Google Scholar
  35. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) 'Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model'. J Clim 19(16):3771–3791CrossRefGoogle Scholar
  36. Ryaboshapko A, Bullock RO, Christensen J, Cohen M, Dastoor A, Ilyin I, Petersen G, Syrakov D, Travnikov O, Artz RS, Davignon D, Draxler RR, Munthe J, Pacyna J (2007a) Intercomparison study of atmospheric mercury models: 1. Comparison of models with short term measurements. Sci Total Environ 376(2007):228–240CrossRefGoogle Scholar
  37. Ryaboshapko A, Bullock RO, Christensen J, Cohen M, Dastoor A, Ilyin I, Petersen G, Syrakov D, Travnikov O, Artz RS, Davignon D, Draxler RR, Munthe J, Pacyna J (2007b) Intercomparison study of atmospheric mercury models: 2. Modelling results vs. long-term observations and comparison of country deposition budgets. Sci Total Environ 377(2007):319–333CrossRefGoogle Scholar
  38. Ryaboshapko A, Bullock RO, Christensen J, Cohen M, Dastoor A, Ilyin I, Petersen G, Syrakov D, Travnikov O, Artz RS, Davignon D, Draxler RR, Munthe J, Pacyna J (2007c) Intercomparison study of numerical models for long-range transport of mercury: Stage 3: comparison of modelled results with long-term observations and comparison of calculated items of regional balances, EMEP/MSC-E Technical Report 1/2005. Moscow 2005Google Scholar
  39. Sander R, Kerkweg A, Jцckel P, Lelieveld J (2005) Technical note: the new comprehensive atmospheric chemistry module MECCA. Atmos Chem Phys 5(2):445–450CrossRefGoogle Scholar
  40. Sillman S, Marsik FJ, Al-Wali KI, Keeler GJ, Landis MS (2007) Reactive mercury in the troposphere: Model formation and results for Florida, the northeastern United States, and the Atlantic Ocean. J Geophys Res Atmos, 112, D23305. doi: 10.1029/2006JD008227
  41. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang WX-Y Wang, Powers JG (2008) A description of the advanced research WRF Version 3. Tech. rep., National Center for Atmospheric ResearchGoogle Scholar
  42. Strode SA, Jaegle L, Selin NE, Jacob DJ, Park RJ, Yantosca RM, Mason RP, Slemr F (2007) Air-sea exchange in the global mercury cycle. Global Biogeochem Cycles 21, GB1017CrossRefGoogle Scholar
  43. Swartzendruber PC, Chand D, Jaffe DA, Smith J, Reidmiller D, Gratz L, Keeler J, Strode S, Jaegle L, Talbot R (2008) Vertical distribution of mercury, CO, ozone, and aerosol scattering coefficient in the Pacific Northwest during the spring 2006 INTEX-B campaign. J Geophys Res 113, D10305. doi: 10.1029/2007JD009579 CrossRefGoogle Scholar
  44. Travnikov, O., and I. Ilyin (2009), The EMEP/MSC-E mercury modeling system, in mercury fate and transport in the global atmosphere, edited by N. Pirrone and R. P. Mason, pp. 571-587, Springer, DordechtGoogle Scholar
  45. UNC Carolina Environmental Program (2005) Sparse matrix operator kernel emissions (SMOKE) modeling system. UNC Chapel Hill, North CarolinaGoogle Scholar
  46. UNEP (United Nations Environment Programme) (2002) Global mercury assessment. UNEP, GenevaGoogle Scholar
  47. UNEP (United Nations Environment Programme) (2008) Global atmospheric mercury assessmet: sources, emissions and transport. UNEP, GenevaGoogle Scholar
  48. UNEP (United Nations Environment Programme) (2013a) Global mercury report. UNEP, Geneva, 2013Google Scholar
  49. UNEP (United Nations Environment Programme), (2013b). Mercury: Time to act. Tech. rep., Chemicals Branch, Division of Technology, Industry and Economics, United Nations Environment Programme (UNEP)Google Scholar
  50. Vijayaraghavan K, Karamchandani P, Seigneur C, Balmori R, Chen S-Y (2008) Plume-in-grid modeling of atmospheric mercury. J Geophys Res 113, D24305. doi: 10.1029/2008jd010580 CrossRefGoogle Scholar
  51. Weigelt A, Temme C, Bieber E, Schwerin A, Schuetz M, Ebinghaus R, Kock HH (2013) Measurements of atmospheric mercury species at a German rural background site from 2009 to 2011 – methods and results. Environ Chem. doi: 10.1071/EN12107 Google Scholar
  52. Yarwood G, Rao S, Yocke M, Whitten GZ (2005) Updates to the carbon bond chemical mechanism: CB05. Final Report RT-04-00675. Yocke and Company 415.899.0703, NovatoGoogle Scholar
  53. Zager, D.A., Rajar, R., Petovsek, G., Cetina, M., Horvat, M. (2007). Modelling of mercury cycling in the Mediterranean Sea. Rapp. Comm. Int. Mer Médit 28Google Scholar
  54. Zhang L, Blanchard P, Gay DA, Presbo EM, Risch MR, Johnson D, Narayan J, Zsolway R, Holsen TM, Miller EK, Castro MS, Graydon JA, St. Louis VL, Dalziel J (2012a) Estimation of speciated and total mercury dry deposition at monitoring locations in eastern and central North America. ACP 12:4327–4340Google Scholar
  55. Zhang, L., Blanchard, P., Johnson ,D., Dastoor, A., Tyzhkov, A., Lin, C.J., Vijayaraghavan K., Gay, D., Holsen, T.M., Huang, J., Graydon, J.A., St Louis, V.L., Castro, M.S., Miller, E.K., Marisk, F., Lu, J., Poissant, L., Pilote, M., Zhang, K.M., (2012b). Assessment of modeled mercury dry deposition over the Great Lakes regionGoogle Scholar
  56. Zhang Y, Jaeglé L, van Donkelaar A, Martin RV, Holmes CD, Amos HM, Wang Q, Talbot R, Artz R, Brooks S, Luke W, Holsen TM, Felton D, Miller EK, Perry KD, Schmeltz D, Steffen A, Tordon R, Weiss- Penzias P, Zsolway R (2012c) Nested-grid simulation of mercury over North America. Atmos Chem Phys 2012(12):6095–6111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. Bieser
    • 1
    Email author
  • F. De Simone
    • 2
  • C. Gencarelli
    • 2
  • B. Geyer
    • 1
  • I. Hedgecock
    • 2
  • V. Matthias
    • 1
  • O. Travnikov
    • 3
  • A. Weigelt
    • 1
  1. 1.Institute of Coastal ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany
  2. 2.Istituto Inquinamento AtmosfericoCNRRendeItaly
  3. 3.Meteorological Synthesizing Center-East of EMEPMoscowRussia

Personalised recommendations