Environmental Science and Pollution Research

, Volume 21, Issue 15, pp 9334–9343 | Cite as

On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution

  • Benedicte Prelot
  • Imen Ayed
  • Franck Marchandeau
  • Jerzy Zajac
Research Article

Abstract

Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25 % of the “ideal” value in Effluent 1 and 50 % in Effluent 2; a further decrease to about 15 % was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60 % of the ideal value in the two effluents for Amberlite® IRN77 and 75 % for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.

Keywords

Heavy metal pollution Cation-exchange resins Simulated effluents Competitive sorption Isothermal titration calorimetry 

Supplementary material

11356_2014_2862_MOESM1_ESM.pdf (249 kb)
ESM 1The supplementary data include: (i) literature review on the equilibrium, thermodynamic, or kinetic aspects of heavy metal sorption onto weakly or strongly acidic resins; (ii) detailed experimental procedures for measurement of individual sorption isotherms for cesium and strontium, as well as molar enthalpy changes accompanying metal adsorption from single-component solutions; and (iii) rationalization of the main conclusion on the basis of ion-exchange equation (PDF 249 kb)

References

  1. Aguado J, Arsuaga JM, Arencibia A (2008) Influence of synthesis conditions on mercury adsorption capacity of propylthiol functionalized SBA-15 obtained by co-condensation. Microporous Mesoporous Mater 109(1–3):513–524. doi:10.1016/j.micromeso.2007.05.061 CrossRefGoogle Scholar
  2. Alexandratos SD (2008) Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Ind Eng Chem Res 48(1):388–398. doi:10.1021/ie801242v
  3. Arakaki LNH, Alves APM, da Silva EC, Fonseca MG, Oliveira SF, Espinola JGP, Airoldi C (2007) Sequestration of Cu(II), Ni(II), and Co(II) by ethyleneimine immobilized on silica. Thermochim Acta 453(1):72–74. doi:10.1016/j.tca.2006.10.016 CrossRefGoogle Scholar
  4. Buesseler KO (2012) Fishing for Answers off Fukushima. Science 338(6106):480–482. doi:10.1126/science.1228250 CrossRefGoogle Scholar
  5. Carter TG, Yantasee W, Sangvanich T, Fryxell GE, Johnson DW, Addleman RS (2008) New functional materials for heavy metal sorption: “Supramolecular” attachment of thiols to mesoporous silica substrates. Chem Commun 43:5583–5585. doi:10.1039/B810576F CrossRefGoogle Scholar
  6. da Silva EC, da Silva LS, Lima LCB, Santos LD, Santos M, de Matos JME, Airoldi C (2011) Thermodynamic data of 6-(4′-aminobutylamino)-6-deoxycellulose sorbent for cation removal from aqueous solutions. Sep Sci Technol 46(16):2566–2574. doi:10.1080/01496395.2011.599826 CrossRefGoogle Scholar
  7. Demirbas A, Pehlivan E, Gode F, Altun T, Arslan G (2005) Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. J Colloid Interface Sci 282(1):20–25. doi:10.1016/j.jcis.2004.08.147 CrossRefGoogle Scholar
  8. Faur-Brasquet C, Reddad Z, Kadirvelu K, Le Cloirec P (2002) Modeling the adsorption of metal ions (Cu2+, Ni2+, Pb2+) onto ACCs using surface complexation models. Appl Surf Sci 196(1–4):356–365. doi:10.1016/s0169-4332(02)00073-9 Google Scholar
  9. Febrianto J, Kosasih AN, Sunarso J, Ju Y-H, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162(2–3):616–645. doi:10.1016/j.jhazmat.2008.06.042 CrossRefGoogle Scholar
  10. Gupta VK, Singh P, Rahman N (2004) Adsorption behavior of Hg(II), Pb(II), and Cd(II) from aqueous solution on Duolite C-433: a synthetic resin. J Colloid Interface Sci 275(2):398–402CrossRefGoogle Scholar
  11. Horst J, Höll WH, Eberle SH (1990) Application of the surface complex formation model to exchange equilibria on ion exchange resins: Part I. Weak-acid resins Reactive Polymers 13(3):209–231. doi:10.1016/0923-1137(90)90092-i CrossRefGoogle Scholar
  12. Hubicki Z, Kołodyńska D (2012) Selective removal of heavy metal ions from waters and waste waters using ion exchange methods. Ion Exch Technol INTECH. doi:10.5772/51040 Google Scholar
  13. IRSN Press Release (2011) Synthèse actualisée des connaissances relatives à l’impact sur le milieu marin des rejets radioactifs du site nucléaire accidenté de Fukushima Dai-ichi. Institut de Radioprotection et de Sûreté Nucléaire, ParisGoogle Scholar
  14. Kocaoba S (2007) Comparison of Amberlite IR 120 and dolomite’s performances for removal of heavy metals. J Hazard Mater 147(1–2):488–496. doi:10.1016/j.jhazmat.2007.01.037 CrossRefGoogle Scholar
  15. Lantenois S, Prelot B, Douillard J-M, Szczodrowski K, Charbonnel M-C (2007) Flow microcalorimetry: experimental development and application to adsorption of heavy metal cations on silica. Appl Surf Sci 253(13):5807–5813. doi:10.1016/j.apsusc.2006.12.064 Google Scholar
  16. Marcus Y (1994) A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys Chem 51(2–3):111–127. doi:10.1016/0301-4622(94)00051-4 CrossRefGoogle Scholar
  17. Mattigod SV, Feng X, Fryxell GE, Liu JUN, Gong M (1999) Separation of complexed mercury from aqueous wastes using self-assembled mercaptan on mesoporous silica. Sep Sci Technol 34(12):2329–2345. doi:10.1081/ss-100100775 CrossRefGoogle Scholar
  18. Melo JCP, Silva EC, Santana SAA, Airoldi C (2011) Synthesized cellulose/succinic anhydride as an ion exchanger. Calorimetry of divalent cations in aqueous suspension. Thermochim Acta 524(1–2):29–34. doi:10.1016/j.tca.2011.06.007 CrossRefGoogle Scholar
  19. Pérez-Quintanilla D, Sánchez A, del Hierro I, Fajardo M, Sierra I (2007) Functionalized HMS mesoporous silica as solid phase extractant for Pb(II) prior to its determination by flame atomic absorption spectrometry. J Sep Sci 30(10):1556–1567. doi:10.1002/jssc.200600540 CrossRefGoogle Scholar
  20. Petrus R, Warchoł JK (2005) Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems. Water Res 39(5):819–830. doi:10.1016/j.watres.2004.12.003 CrossRefGoogle Scholar
  21. Prelot B, Lantenois S, Chorro C, Charbonnel M-C, Zajac J, Douillard JM (2011) Effect of nanoscale pore space confinement on cadmium adsorption from aqueous solution onto ordered mesoporous silica: a combined adsorption and flow calorimetry study. J Phys Chem C 115(40):19686–19695. doi:10.1021/jp2015885 CrossRefGoogle Scholar
  22. Prelot B, Lantenois S, Charbonnel M-C, Marchandeau F, Douillard JM, Zajac J (2013) What are the main contributions to the total enthalpy of displacement accompanying the adsorption of some multivalent metals at the silica–electrolyte interface? J Colloid Interface Sci 396:205–209. doi:10.1016/j.jcis.2012.12.049 CrossRefGoogle Scholar
  23. Rottner B (2011). ONET Technologies, Marseille (France)Google Scholar
  24. Saha B, Streat M (2005) Adsorption of trace heavy metals: application of surface complexation theory to a macroporous polymer and a weakly acidic ion-exchange resin. Langmuir 44(23):8671–8681. doi:10.1021/ie048848+ Google Scholar
  25. Singare P, Lokhande R, Samant N, Dhatrak M (2010) Selectivity study of strongly acidic cation exchange resin Amberlite IR-120. Colloid J 72(4):538–543. doi:10.1134/s1061933x10040150 CrossRefGoogle Scholar
  26. Tanabe F (2012) Analyses of core melt and re-melt in the Fukushima Daiichi nuclear reactors. J Nucl Sci Technol 49(1):18–36. doi:10.1080/18811248.2011.636537 CrossRefGoogle Scholar
  27. Tanaka Y (2007) Ion exchange membranes: fundamentals and applications. Membrane Science and Technology Series, vol 12. Elsevier, AmsterdamGoogle Scholar
  28. Wei K, Shu L, Guo W, Wu Y, Zeng X (2011) Synthesis of amino-functionalized hexagonal mesoporous silica for adsorption of Pb2+. Chin J Chem 29(1):143–146. doi:10.1002/cjoc.201190042 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Benedicte Prelot
    • 1
  • Imen Ayed
    • 1
  • Franck Marchandeau
    • 1
  • Jerzy Zajac
    • 1
  1. 1.Institut Charles Gerhardt de Montpellier, CNRS UMR 5253Université Montpellier 2, Equipe Agrégats, Interfaces et Matériaux pour l’EnergieMontpellier Cedex 5France

Personalised recommendations