Environmental Science and Pollution Research

, Volume 21, Issue 15, pp 9259–9269 | Cite as

Formation of indoor nitrous acid (HONO) by light-induced NO2 heterogeneous reactions with white wall paint

  • Vincent Bartolomei
  • Matthias Sörgel
  • Sasho Gligorovski
  • Elena Gómez Alvarez
  • Adrien Gandolfo
  • Rafal Strekowski
  • Etienne Quivet
  • Andreas Held
  • Cornelius Zetzsch
  • Henri Wortham
Research Article

Abstract

Gaseous nitrogen dioxide (NO2) represents an oxidant that is present in relatively high concentrations in various indoor settings. Remarkably increased NO2 levels up to 1.5 ppm are associated with homes using gas stoves. The heterogeneous reactions of NO2 with adsorbed water on surfaces lead to the generation of nitrous acid (HONO). Here, we present a HONO source induced by heterogeneous reactions of NO2 with selected indoor paint surfaces in the presence of light (300 nm < λ < 400 nm). We demonstrate that the formation of HONO is much more pronounced at elevated relative humidity. In the presence of light (5.5 W m−2), an increase of HONO production rate of up to 8.6 · 109 molecules cm−2 s−1 was observed at [NO2] = 60 ppb and 50 % relative humidity (RH). At higher light intensity of 10.6 (W m−2), the HONO production rate increased to 2.1 · 1010 molecules cm−2 s−1. A high NO2 to HONO conversion yield of up to 84 % was observed. This result strongly suggests that a light-driven process of indoor HONO production is operational. This work highlights the potential of paint surfaces to generate HONO within indoor environments by light-induced NO2 heterogeneous reactions.

Keywords

HONO Indoor Light Heterogeneous reactions Paint 

References

  1. Akimoto H, Takagi H, Sakamaki F (1987) Photoenhancement of the nitrous acid formation in the surface reaction of nitrogen dioxide and water vapour: extra radical source in smog chamber experiments. Int J Chem Kinet 19:539–551CrossRefGoogle Scholar
  2. Alfassi ZB, Huie RE, Neta P (1986) Substituent effects on rates of one-electron oxidation of phenols by the radicals chlorine dioxide, nitrogen dioxide, and trioxosulfate(1-). J Phys Chem 90:4156–4158Google Scholar
  3. Arens F, Gutzwiller L, Gäggeler HW, Ammann M (2002) The reaction of NO2 with solid anthrarobin (1,2,10-trihydroxy-anthracene). Phys Chem Chem Phys 4:3684–3690CrossRefGoogle Scholar
  4. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2004) Evaluated kinetic and photochemical data for atmospheric chemistry: volume I—gas phase reactions of Ox, HOx, NOx and SOx species. Atmos Chem Phys 4:1461–1738Google Scholar
  5. Auvinen J, Wirtanen L (2008) The influence of photocatalytic interior paints on indoor air quality. Atmos Environ 42:4101–4112CrossRefGoogle Scholar
  6. Bartels-Rausch T, Brigante M, Elshorbany YF, Ammann M, D’Anna B, George C, Stemmler C, Ndour M, Kleffmann J (2010) Humic acid in ice: photo-enhanced conversion of nitrogen dioxide into nitrous acid. Atmos Environ 44:5443–5450CrossRefGoogle Scholar
  7. Behnke W, George C, Scheer V, Zetzsch C (1997) Production and decay of ClONO2 from the reaction of gaseous N2O5 with NaCl solution: bulk and aerosol experiments. J Geophys Res 102(D3):3795–3804CrossRefGoogle Scholar
  8. Brigante M, Cazoir D, D’Anna B, George C, Donaldson DJ (2008) Photoenhanced uptake of NO2 by pyrene solid films. J Phys Chem A 112:9503–9508Google Scholar
  9. Carslaw N (2007) A new detailed chemical model for indoor air pollution. Atmos Environ 41:1164–1179CrossRefGoogle Scholar
  10. Febo A, Perrino C (1991) Prediction and experimental evidence for high air concentration of nitrous acid in indoor environments. Atmos Environ 25A:1055–1061CrossRefGoogle Scholar
  11. Febo A, Perrino C (1995) Measurement of high concentration of nitrous acid inside automobiles. Atmos Environ 29:345–351CrossRefGoogle Scholar
  12. Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere. Theory, experiments, and applications. Academic, San DiegoGoogle Scholar
  13. Finlayson-Pitts BJ, Wingen LM, Sumner AL, Syomin D, Ramazan KA (2003) The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys Chem Chem Phys 5:223–242CrossRefGoogle Scholar
  14. George C, Strekowski RS, Kleffmann J, Stemmler K, Ammann M (2005) Photoenhanced uptake of gaseous NO2 on solid organic compounds: a photochemical source of HONO? Faraday Discuss 130:195–210CrossRefGoogle Scholar
  15. Gligorovski S, Weschler CJ (2013) The oxidative capacity of indoor atmospheres. Environ Sci Technol 47(24):13905–13906CrossRefGoogle Scholar
  16. Gómez Alvarez E, Wortham H, Strekowski R, Zetzsch C, Gligorovski S (2012) Atmospheric photosensitized heterogeneous and multiphase reactions: from outdoors to indoors. Environ Sci Technol 46:1955–1963CrossRefGoogle Scholar
  17. Gómez Alvarez E, Amedro D, Afif C, Gligorovski S, Schoemacker C, Fittschen C, Doussin J-F, Wortham H (2013) Photolysis of nitrous acid as a primary source of OH radicals indoors. Proc Natl Acad Sci US A 110(33):13294–13299CrossRefGoogle Scholar
  18. Harwood EA, Hopkins PB, Sigurdsson ST (2000) Chemical synthesis of cross-link lesions found in nitrous acid treated DNA: a general method for the preparation of N2-substituted 2-deoxyguanosines. J Org Chem 65:2959–2964CrossRefGoogle Scholar
  19. Jenkin ME, Cox RA, Williams DJ (1988) Laboratory studies of the kinetics of formation of nitrous acid from the thermal reaction of nitrogen dioxide and water vapour. Atmos Environ 22:487–498CrossRefGoogle Scholar
  20. Kleffmann J, Wiesen P (2008) Technical note: quantification of interferences of wet chemical HONO LOPAP measurements under simulated polar conditions. Atmos Chem Phys 8:6813–6822Google Scholar
  21. Kleffmann J, Heland J, Kurtenbach R, Lörzer JC, Wiesen P (2002) A new instrument (LOPAP) for the detection of nitrous acid (HONO). Environ Sci Pollut Res 9(4):48–54Google Scholar
  22. Laufs S, Burgeth G, Duttlinger W, Kurtenbach R, Maban M, Thomas C, Wiesen P, Kleffmann J (2010) Conversion of nitrogen oxides on commercial photocatalytic dispersion paints. Atmos Environ 44:2341–2349CrossRefGoogle Scholar
  23. Leaderer BP, Naeher L, Jankun T, Balenger K, Holford TR, Toth C, Sullivan J, Wolfson JM, Koutrakis P (1999) Indoor, outdoor, and regional summer and winter concentrations of PM10, PM2.5, SO4 2−, H+, NH4 +, NO3 , NH3, and nitrous acid in homes with and without kerosene space heaters. Environ Health Perspect 107:223–231Google Scholar
  24. Lee K, Xue J, Geyh AS, Özkaynak H, Leaderer BP, Weschler CJ, Spengler JD (2002) Nitrous acid, nitrogen dioxide, and ozone concentrations in residential environments. Environ Health Perspect 110:145–149CrossRefGoogle Scholar
  25. Monn C (2001) Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmos Environ 35:1–32CrossRefGoogle Scholar
  26. Perraudin E, Budzinski H, Villenace E (2005) Kinetic study of the reactions of NO2 with polycyclic aromatic hydrocarbons adsorbed on silica particles. Atmos Environ 39:6557–6567CrossRefGoogle Scholar
  27. Pitts JN Jr, Grosjean D, Van Cauwenbergge K, Schmid JP, Fitz DR (1978) Photooxidation of aliphatic amines under simulated atmospheric conditions: formation of nitrosamines, nitramines, amides and photochemical oxidant. Environ Sci Technol 12:946–953CrossRefGoogle Scholar
  28. Pitts JN Jr, Sanhueza E, Atkinson R, Carter WPL, Winer AM, Harris GW, Plum CN (1984) An investigation of the dark formation of nitrous acid in environmental chambers. Int J Chem Kinet 16:919–939CrossRefGoogle Scholar
  29. Pitts JN Jr, Biermann HW, Tuazon EC, Green M, Long WD, Winer AM (1989) Time-resolved identification and measurement of indoor air pollutants by spectroscopic techniques: gaseous nitrous acid, methanol, formaldehyde and formic acid. J Air Pollut Control Assoc 39:1344–1347Google Scholar
  30. Sakamaki F, Hatakeyama S, Akimoto H (1983) Formation of nitrous Acid and nitric oxide in the heterogeneous dark reaction of nitrogen dioxide and water vapor in a smog chamber. Int J Chem Kinet 15:1013–1029CrossRefGoogle Scholar
  31. Salthammer T, Fuhrmann F (2007) Photocatalytic surface reactions on indoor wall paint. Environ Sci Technol 41(18):6573–6578CrossRefGoogle Scholar
  32. Sarwar G, Corsi R, Kimura Y, Allen D, Weschler JC (2002) Hydroxyl radicals in indoor environments. Atmos Environ 36:3973–3988CrossRefGoogle Scholar
  33. Sleiman M, Gundel LA, Pankow JF, Jacob P III, Singer BC, Destaillats H (2010) Formation of carcinogens indoors by surface-mediated reactions of nicotine with nitrous acid, leading to potential third-hand smoke hazards. Proc Natl Acad Sci US A 107:6576–6581CrossRefGoogle Scholar
  34. Sosedova Y, Rouvière A, Bartels-Rausch T, Ammann M (2011) UVA/Vis-induced nitrous acid formation on polyphenolic films exposed to gaseous NO2. Photochem Photobiol Sci 10:1680–1690Google Scholar
  35. Spengler JD, Brauer M, Samet JM, Lambert WE (1993) Nitrous acid in Albuquerque, New Mexico, homes. Environ Sci Technol 27:841–845CrossRefGoogle Scholar
  36. Stemmler K, Ammann M, Donders C, Kleffmann J, George C (2006) Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature 440:195–198CrossRefGoogle Scholar
  37. Stemmler K, Ndour M, Elshorbany Y, Kleffmann J, D’Anna B, George C, Bohn B, Ammann M (2007) Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol. Atmos Chem Phys 7:4237–4248Google Scholar
  38. Stutz J, Kim ES, Platt U, Bruno P, Perrino C, Febo A (2000) UV-visible absorption cross section of nitrous acid. J Geophys Res 105(D11):14585–14592CrossRefGoogle Scholar
  39. Večeřa Z, Dasgupta PK (1994) Indoor nitrous acid levels. Production of nitrous acid from open-flame sources. Int J Environ Anal Chem 56:311–316CrossRefGoogle Scholar
  40. Wainman T, Weschler CJ, Lioy PJ, Zhang J (2001) Effects of surface type and relative humidity on the production and concentration of nitrous acid in a model indoor environment. Environ Sci Technol 35:2200–2206CrossRefGoogle Scholar
  41. Wallace LA, Emmerich SJ, Howard-Reed C (2002) Continuous measurements of air change rates in an occupied house for 1 year: the effect of temperature, wind, fans, and windows. J Expo Anal Environ Epidemiol 12:296–306CrossRefGoogle Scholar
  42. Weschler CJ (2004) Chemical reactions among indoor pollutants: what we’ve learned in the new millennium. Indoor Air 14:184–194CrossRefGoogle Scholar
  43. Weschler CJ (2009) Changes in indoor pollutants since the 1950s. Atmos Environ 43:153–169CrossRefGoogle Scholar
  44. Weschler CJ, Shields HC (1997) Potential reactions among indoor pollutants. Atmos Environ 31:3487–3495CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Vincent Bartolomei
    • 1
  • Matthias Sörgel
    • 2
    • 3
  • Sasho Gligorovski
    • 1
  • Elena Gómez Alvarez
    • 1
  • Adrien Gandolfo
    • 1
  • Rafal Strekowski
    • 1
  • Etienne Quivet
    • 1
  • Andreas Held
    • 2
  • Cornelius Zetzsch
    • 2
  • Henri Wortham
    • 1
  1. 1.Aix Marseille UniversityMarseille Cedex 3France
  2. 2.Forschungsstelle für Atmosphärische ChemieUniversität BayreuthBayreuthGermany
  3. 3.Biogeochemistry DepartmentMax Planck Institute for ChemistryMainzGermany

Personalised recommendations