Advertisement

Environmental Science and Pollution Research

, Volume 21, Issue 14, pp 8336–8367 | Cite as

Electrochemical advanced oxidation processes: today and tomorrow. A review

  • Ignasi Sirés
  • Enric Brillas
  • Mehmet A. Oturan
  • Manuel A. Rodrigo
  • Marco Panizza
Electrochemical advanced oxidation processes for removal of toxic/persistent organic pollutants from water

Abstract

In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical (OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

Keywords

EAOPs Anodic oxidation Electro-Fenton Photoelectrocatalysis Photoelectro-Fenton Sonoelectrochemistry Water treatment 

Abbreviations

ACP

3-Amino-6-chloropyridazine

ADE

Air diffusion electrode

AMI

3-Amino-5-methylisoxazole

AO

Anodic oxidation

AOP

Advanced oxidation process

BDD

Boron-doped diamond

BZQ

p-Benzoquinone

CF

Carbon felt

CNT

Carbon nanotube

COD

Chemical oxygen demand (mg of oxygen L−1)

DSA

Dimensionally stable anode

e

Electron

eCB

Electron in the conduction band

Eanod

Anodic potential (V)

EAOP

Electrochemical advanced oxidation process

Ecat

Cathodic potential (V)

EF

Electro-Fenton

GC-MS

Gas chromatography coupled to mass spectrometry

h

Planck constant (6.626 × 10−34 m2 kg/s)

HPLC

High-performance liquid chromatography

h+VB

Positively charged vacancy or hole in the valence band

MMO

Mixed metal oxides

PEC

Photoelectrocatalysis

PEF

Photoelectro-Fenton

R

Organic compound

ROS

Reactive oxygen species

RVC

Reticulated vitreous carbon

SE

Sonoelectrochemistry

SPEF

Solar photoelectro-Fenton

TOC

Total organic carbon (mg of carbon L−1)

US

Ultrasounds

)))

Ultrasounds

Greek symbols

λ

Wavelength (nm)

ν

Frequency (Hz)

References

  1. Abdessalem AK, Oturan N, Bellakhal N, Dachraoui M, Oturan MA (2008) Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Appl Catal B Environ 78:334–341Google Scholar
  2. Almeida LC, Garcia-Segura S, Bocchi N, Brillas E (2011) Solar photoelectro-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector: process optimization by response surface methodology. Appl Catal B Environ 103:21–30Google Scholar
  3. Alverez-Gallegos A, Pletcher D (1999) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: the removal of phenols and related compounds from aqueous effluents. Electrochim Acta 44:2483–2492Google Scholar
  4. Anglada Á, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84:1747–1755Google Scholar
  5. Anglada Á, Urtiaga AM, Ortiz I (2010) Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate. J Hazard Mater 181:729–735Google Scholar
  6. Anglada Á, Urtiaga A, Ortiz I, Mantzavinos D, Diamadopoulos E (2011) Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products. Water Res 45:828–838Google Scholar
  7. Bai J, Liu Y, Li J, Zhou B, Zheng Q, Cai W (2010) A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline. Appl Catal B Environ 98:154–160Google Scholar
  8. Balci B, Oturan MA, Oturan N, Sirés I (2009) Decontamination of aqueous glyphosate, (aminomethyl)phosphonic acid, and glufosinate solutions by electro-Fenton-like process with Mn2+ as the catalyst. J Agric Food Chem 57:4888–4894Google Scholar
  9. Bautista P, Mohedano A, Casas J, Zazo J, Rodriguez J (2008) An overview of the application of Fenton oxidation to industrial wastewaters treatment. J Chem Technol Biotechnol 83:1323–1338Google Scholar
  10. Bellakhal N, Oturan MA, Oturan N, Dachraoui M (2006) Olive oil mill wastewater treatment by the electro-Fenton process. Environ Chem 3:345–349Google Scholar
  11. Bergmann MEH (2010) In: Comninellis C, Chen G (eds) Electrochemistry for the environment. Springer Science, New York, pp 163–204Google Scholar
  12. Bergmann H, Iourtchouk T, Schöps K, Bouzek K (2002) New UV irradiation and direct electrolysis—promising methods for water disinfection. Chem Eng J 85:111–117Google Scholar
  13. Bolyard M, Fair PS, Hautman DP (1992) Occurrence of chlorate in hypochlorite solutions used for drinking water disinfection. Environ Sci Technol 26:1663–1665Google Scholar
  14. Borràs N, Arias C, Oliver R, Brillas E (2013) Anodic oxidation, electro-Fenton and photoelectro-Fenton degradation of cyanazine using a boron-doped diamond anode and an oxygen-diffusion cathode. J Electroanal Chem 689:158–167Google Scholar
  15. Bouafia-Chergui S, Oturan N, Khalaf H, Oturan MA (2010) Parametric study on the effect of the ratios [H2O2]/[Fe3+] and [H2O2]/[substrate] on the photo-Fenton degradation of cationic azo dye Basic Blue 41. J Environ Sci Health A 45:622–629Google Scholar
  16. Brillas E, Martínez-Huitle CA (2011) Synthetic diamond films: Preparation, electrochemistry, characterization and applications. Wiley, HobokenGoogle Scholar
  17. Brillas E, Bastida RM, Llosa E, Casado J (1995) Electrochemical destruction of aniline and 4–chloroaniline for wastewater treatment using a carbon–PTFE O2–fed cathode. J Electrochem Soc 142:1733–1741Google Scholar
  18. Brillas E, Calpe JC, Casado J (2000) Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res 34:2253–2262Google Scholar
  19. Brillas E, Baños MA, Camps S, Arias C, Cabot P-L, Garrido JA, Rodríguez RM (2004) Catalytic effect of Fe2+, Cu2+ and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode. New J Chem 28:314–322Google Scholar
  20. Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631Google Scholar
  21. Bringas E, Saiz J, Ortiz I (2011) Kinetics of ultrasound-enhanced electrochemical oxidation of diuron on boron-doped diamond electrodes. Chem Eng J 172:1016–1022Google Scholar
  22. Brown RF, Jamison SE, Pandit UK, Pinkus J, White GR, Braendlin HP (1964) The reaction of Fenton’s reagent with phenoxyacetic acid and some halogen-substituted phenoxyacetic acids. J Org Chem 29:146–153Google Scholar
  23. Cañizares P, García-Gómez J, Sáez C, Rodrigo M (2003) Electrochemical oxidation of several chlorophenols on diamond electrodes: part I. Reaction mechanism. J Appl Electrochem 33:917–927Google Scholar
  24. Cañizares P, García-Gómez J, Sáez C, Rodrigo M (2004) Electrochemical oxidation of several chlorophenols on diamond electrodes: part II. Influence of waste characteristics and operating conditions. J Appl Electrochem 34:87–94Google Scholar
  25. Cañizares P, Díaz M, Domínguez JA, Lobato J, Rodrigo MA (2005a) Electrochemical treatment of diluted cyanide aqueous wastes. J Chem Technol Biotechnol 80:565–573Google Scholar
  26. Cañizares P, Larrondo F, Lobato J, Rodrigo M, Sáez C (2005b) Electrochemical synthesis of peroxodiphosphate using boron-doped diamond anodes. J Electrochem Soc 152:D191–D196Google Scholar
  27. Cañizares P, Lobato J, Paz R, Rodrigo M, Sáez C (2005c) Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Res 39:2687–2703Google Scholar
  28. Cañizares P, Paz R, Lobato J, Sáez C, Rodrigo MA (2006) Electrochemical treatment of the effluent of a fine chemical manufacturing plant. J Hazard Mater 138:173–181Google Scholar
  29. Cañizares P, Lobato J, Paz R, Rodrigo MA, Sáez C (2007a) Advanced oxidation processes for the treatment of olive-oil mills wastewater. Chemosphere 67:832–838Google Scholar
  30. Cañizares P, Larrondo F, Lobato J, Rodrigo MA, Saez C (2007 January 26) Síntesis electroquímica de sales de peroxodifosfato mediante electrodos de diamante conductor de la electricidad. Spanish Patent P200401820Google Scholar
  31. Cañizares P, Sáez C, Sánchez-Carretero A, Rodrigo M (2009) Synthesis of novel oxidants by electrochemical technology. J Appl Electrochem 39:2143–2149Google Scholar
  32. Chan PY, El-Din MG, Bolton JR (2012) A solar-driven UV/Chlorine advanced oxidation process. Water Res 46:5672–5682Google Scholar
  33. Comninellis C, Nerini A (1995) Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J Appl Electrochem 25:23–28Google Scholar
  34. Daghrir R, Drogui P, Robert D (2012a) Photoelectrocatalytic technologies for environmental applications. J Photochem Photobiol A 238:41–52Google Scholar
  35. Daghrir R, Drogui P, Khakani MAE (2012b) Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO2 photo-anode with simultaneous H2O2 production. Electrochim Acta 87:18–31Google Scholar
  36. Dai Q, Shen H, Xia Y, Chen F, Wang J, Chen J (2012) The application of a novel Ti/SnO2-Sb2O3 PTFE-La-Ce-β-PbO2 anode on the degradation of cationic gold yellow X-GL in sono-electrochemical oxidation system. Sep Purif Technol 104:9–16Google Scholar
  37. Dhaouadi A, Adhoum N (2009) Degradation of paraquat herbicide by electrochemical advanced oxidation methods. J Electroanal Chem 637:33–42Google Scholar
  38. Dirany A, Efremova Aaron S, Oturan N, Sirés I, Oturan MA, Aaron JJ (2011) Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment. Anal Bioanal Chem 400:353–360Google Scholar
  39. Dirany A, Sirés I, Oturan N, Özcan A, Oturan MA (2012) Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution. Environ Sci Technol 46:4074–4082Google Scholar
  40. Esclapez M, Sáez V, Milán-Yáñez D, Tudela I, Louisnard O, González-García J (2010) Sonoelectrochemical treatment of water polluted with trichloroacetic acid: from sonovoltammetry to pre-pilot plant scale. Ultrason Sonochem 17:1010–1020Google Scholar
  41. Fang T, Liao L, Xu X, Peng J, Jing Y (2013) Removal of COD and colour in real pharmaceutical wastewater by photoelectrocatalytic oxidation method. Environ Technol 34(6):779–786Google Scholar
  42. Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910Google Scholar
  43. Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434:52–55Google Scholar
  44. Flox C, Garrido JA, Rodríguez RM, Cabot P-L, Centellas F, Arias C, Brillas E (2007) Mineralization of herbicide mecoprop by photoelectro-Fenton with UVA and solar light. Catal Today 129:29–36Google Scholar
  45. Frontistis Z, Daskalaki VM, Katsaounis A, Poulios I, Mantzavinos D (2011) Electrochemical enhancement of solar photocatalysis: degradation of endocrine disruptor bisphenol-A on Ti/TiO2 films. Water Res 45:2996–3004Google Scholar
  46. Fryda M, Matthée T, Mulcahy S, Höfer M, Schäfer L, Tröster I (2003) Applications of DIACHEM electrodes in electrolytic water treatment. Electrochem Soc Interface 12:40–44Google Scholar
  47. Gallard H, De Laat J, Legube B (1998) Effect of pH on the oxidation rate of organic compounds by Fe-II/H2O2. Mechanisms and simulation. New J Chem 22:263–268Google Scholar
  48. Gandini D, Michaud PA, Duo I, Mahé E, Haenni W, Perret A, Comninellis C (1999) Electrochemical behavior of synthetic boron-doped diamond thin film anodes. New Diam Front C Tec 9:303–316Google Scholar
  49. Garbellini GS (2012) In: Kleperis J, Linkov V (eds) Electrolysis. InTech, Rijeka, pp 205–226Google Scholar
  50. Garbellini GS, Salazar-Banda GR, Avaca LA (2008) Ultrasound applications in electrochemical systems: theoretical and experimental aspects. Quim Nova 31:123–133Google Scholar
  51. Garbellini GS, Salazar-Banda GR, Avaca LA (2010) Effects of ultrasound on the degradation of pentachlorophenol by boron-doped diamond electrodes. Electrochim Acta 28:405–415Google Scholar
  52. Garcia-Segura S, Garrido JA, Rodríguez RM, Cabot PL, Centellas F, Arias C, Brillas E (2012) Mineralization of flumequine in acidic medium by electro-Fenton and photoelectro-Fenton processes. Water Res 46:2067–2076Google Scholar
  53. Garcia-Segura S, Dosta S, Guilemany JM, Brillas E (2013) Solar photoelectrocatalytic degradation of Acid Orange 7 azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray. Appl Catal B Environ 132-133:142–150Google Scholar
  54. Georgieva J, Valova E, Armyanov S, Philippidis N, Poulios I, Sotiropoulos S (2012) Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2–WO3 photoanodes. J Hazard Mater 211–212:30–46Google Scholar
  55. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551Google Scholar
  56. González-García J, Banks CE, Šljukić B, Compton RG (2007) Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound. Ultrason Sonochem 14:405–412Google Scholar
  57. González-García J, Esclapez MD, Bonete P, Hernández YV, Garretón LG, Sáez V (2010) Current topics on sonoelectrochemistry. Ultrasonics 50:318–322Google Scholar
  58. Guinea E, Garrido JA, Rodríguez RM, Cabot P-L, Arias C, Centellas F, Brillas E (2010) Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochim Acta 55:2101–2115Google Scholar
  59. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond A Matter 147:332–351Google Scholar
  60. Hiller R, Putterman SJ, Barber BP (1992) Spectrum of synchronous picosecond sonoluminescence. Phys Rev Lett 69:1182–1184Google Scholar
  61. Irmak S, Yavuz HI, Erbatur O (2006) Degradation of 4-chloro-2-methylphenol in aqueous solution by electro-Fenton and photoelectro-Fenton processes. Appl Catal B Environ 63:243–248Google Scholar
  62. Isarain-Chávez E, Arias C, Cabot PL, Centellas F, Rodríguez RM, Garrido JA, Brillas E (2010) Mineralization of the drug beta-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration. Appl Catal B Environ 96:361–369Google Scholar
  63. Isarain-Chávez E, Rodríguez RM, Cabot PL, Centellas F, Arias C, Garrido JA, Brillas E (2011) Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector. Water Res 45:4119–4130Google Scholar
  64. Kapałka A, Fóti G, Comninellis C (2007) Investigations of electrochemical oxygen transfer reaction on boron-doped diamond electrodes. Electrochim Acta 53:1954–1961Google Scholar
  65. Kapałka A, Lanova B, Baltruschat H, Fóti G, Comninellis C (2008) Electrochemically induced mineralization of organics by molecular oxygen on boron-doped diamond electrode. Electrochem Commun 10:1215–1218Google Scholar
  66. Kaplan F, Hesenov A, Gözmen B, Erbatur O (2011) Degradations of model compounds representing some phenolics in olive mill wastewater via electro–Fenton and photoelectro–Fenton treatments. Environ Technol 32:685–692Google Scholar
  67. Khataee AR, Vatanpour V, Amani Ghadim A (2009) Decolorization of CI Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative study. J Hazard Mater 161:1225–1233Google Scholar
  68. Khataee AR, Zarei M, Asl SK (2010) Photocatalytic treatment of a dye solution using immobilized TiO2 nanoparticles combined with photoelectro-Fenton process: optimization of operational parameters. J Electroanal Chem 648:143–150Google Scholar
  69. Khataee AR, Zarei M, Khataee AR (2011) Electrochemical treatment of dye solution by oxalate catalyzed photoelectro-Fenton process using a carbon nanotube–PTFE cathode: optimization by central composite design. Clean Soil Air Water 39:482–490Google Scholar
  70. Khataee AR, Safarpour M, Zarei M, Aber S (2012) Combined heterogeneous and homogeneous photodegradation of a dye using immobilized TiO2 nanophotocatalyst and modified graphite electrode with carbon nanotubes. J Mol Catal A Chem 363:58–68Google Scholar
  71. Lahkimi A, Oturan MA, Oturan N, Chaouch M (2007) Removal of textile dyes from water by the electro-Fenton process. Environ Chem Lett 5:35–39Google Scholar
  72. Li H, Lei H, Yu Q, Li Z, Feng X, Yang B (2010) Effect of low frequency ultrasonic irradiation on the sonoelectro-Fenton degradation of cationic red X-GRL. Chem Eng J 160:417–422Google Scholar
  73. Lin Y-T, Liang C, Chen J-H (2011) Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 82:1168–1172Google Scholar
  74. Liu Y, Gan X, Zhou B, Xiong B, Li J, Dong C, Bai J, Cai W (2009) Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. J Hazard Mater 171:678–683Google Scholar
  75. Lorimer J, Mason T, Plattes M, Phull S, Walton D (2001) Degradation of dye effluent. Pure Appl Chem 73:1957–1968Google Scholar
  76. Lucas MS, Dias AA, Sampaio A, Amaral C, Peres JA (2007) Degradation of a textile reactive azo dye by a combined chemical–biological process: Fenton’s reagent-yeast. Water Res 41:1103–1109Google Scholar
  77. Malpass GRP, Miwa DW, Machado SAS, Motheo AJ (2008) Decolourisation of real textile waste using electrochemical techniques: effect of electrode composition. J Hazard Mater 156:170–177Google Scholar
  78. Marselli B, García-Gómez J, Michaud P-A, Rodrigo MA, Comninellis C (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150:D79–D83Google Scholar
  79. Martín de Vidales MJ, Sáez C, Cañizares P, Rodrigo MA (2012) Removal of triclosan by conductive–diamond electrolysis and sonoelectrolysis. J Chem Technol Biotechnol 88:823–828Google Scholar
  80. Martínez SS, Uribe EV (2012) Enhanced sonochemical degradation of azure B dye by the electroFenton process. Ultrason Sonochem 19:174–178Google Scholar
  81. Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ 87:105–145Google Scholar
  82. Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 12:1324–1340Google Scholar
  83. Moreira FC, Garcia-Segura S, Vilar VJP, Boaventura RAR, Brillas E (2013) Decolorization and mineralization of sunset yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Appl Catal B Environ 142–143:877–890Google Scholar
  84. Nissen S, Alexander BD, Dawood I, Tillotson M, Wells RP, Macphee DE, Killham K (2009) Remediation of a chlorinated aromatic hydrocarbon in water by photoelectrocatalysis. Environ Pollut 157:72–76Google Scholar
  85. Oliver BG, Carey JH (1977) Photochemical production of chlorinated organics in aqueous solutions containing chlorine. Environ Sci Technol 11:893–895Google Scholar
  86. Osugi ME, Zanoni MVB, Chenthamarakshan CR, de Tacconi NR, Woldemariam GA, Mandal SS, Rajeshwar K (2008) Toxicity assessment and degradation of disperse azo dyes by photoelectrocatalytic oxidation on Ti/TiO2 nanotubular array electrodes. J Adv Oxid Technol 11:425–434Google Scholar
  87. Oturan MA (1999) Hydroxylation of aromatic drugs by the electro-Fenton method. Formation and identification of the metabolites of Riluzole. New J Chem 23:793–794Google Scholar
  88. Oturan MA (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2,4-D. J Appl Electrochem 30:475–482Google Scholar
  89. Oturan MA, Pinson J, Deprez D, Terlain B (1992) Polyhydroxylation of salicylic acid by electrocheically generated OH radicals. New J Chem 16:705–710Google Scholar
  90. Oturan MA, Sirés I, Oturan N, Pérocheau S, Laborde J-L, Trévin S (2008) Sonoelectro-Fenton process: a novel hybrid technique for the destruction of organic pollutants in water. J Electroanal Chem 624:329–332Google Scholar
  91. Oturan N, Panizza M, Oturan MA (2009) Cold incineration of chlorophenols in aqueous solution by advanced electrochemical process electro-Fenton. Effect of number and position of chlorine atoms on the degradation kinetics. J Phys Chem A 113:10988–10993Google Scholar
  92. Oturan N, Zhou M, Oturan MA (2010) Metomyl degradation by electro-Fenton and electro-Fenton-like processes: a kinetics study of the effect of the nature and concentration of some transition metal ions as catalyst. J Phys Chem A 114:10605–10611Google Scholar
  93. Oturan MA, Oturan N, Edelahi MC, Podvorica FI, Kacemi KE (2011) Oxidative degradation of herbicide diuron in aqueous medium by Fenton’s reaction based advanced oxidation processes. Chem Eng J 171:127–135Google Scholar
  94. Oturan N, Brillas E, Oturan MA (2012) Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode. Environ Chem Lett 10:165–170Google Scholar
  95. Özcan A, Şahin Y, Koparal AS, Oturan MA (2008) Degradation of picloram by the electro-Fenton process. J Hazard Mater 153:718–727Google Scholar
  96. Panizza M, Cerisola G (2001) Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent. Water Res 35:3987–3992Google Scholar
  97. Panizza M, Cerisola G (2003) Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine. Electrochim Acta 48:1515–1519Google Scholar
  98. Panizza M, Cerisola G (2005) Application of diamond electrodes to electrochemical processes. Electrochim Acta 51:191–199Google Scholar
  99. Panizza M, Cerisola G (2008) Electrochemical degradation of methyl red using BDD and PbO2 anodes. Ind Eng Chem Res 47:6816–6820Google Scholar
  100. Panizza M, Cerisola G (2009a) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569Google Scholar
  101. Panizza M, Cerisola G (2009b) Electrochemical degradation of gallic acid on a BDD anode. Chemosphere 77:1060–1064Google Scholar
  102. Panizza M, Cerisola G (2010) Applicability of electrochemical methods to carwash wastewaters for reuse. Part 1: anodic oxidation with diamond and lead dioxide anodes. J Electroanal Chem 638:28–32Google Scholar
  103. Panizza M, Oturan MA (2011) Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode. Electrochim Acta 56:7084–7087Google Scholar
  104. Panizza M, Duo I, Michaud P, Cerisola G, Comnellis C (2000) Electrochemical generation of silver (II) at boron–doped diamond electrodes. Electrochem Solid-State 3:550–551Google Scholar
  105. Panizza M, Michaud P, Cerisola G, Comninellis C (2001) Electrochemical treatment of wastewaters containing organic pollutants on boron-doped diamond electrodes: prediction of specific energy consumption and required electrode area. Electrochem Commun 3:336–339Google Scholar
  106. Panizza M, Zolezzi M, Nicolella C (2006) Biological and electrochemical oxidation of naphthalene sulfonates in a contaminated site leachate. J Chem Technol Biotechnol 81:225–232Google Scholar
  107. Panizza M, Sirés I, Cerisola G (2008) Anodic oxidation of mecoprop herbicide at lead dioxide. J Appl Electrochem 38:923–929Google Scholar
  108. Park H, Bak A, Ahn YY, Choi J, Hoffmannn MR (2012) Photoelectrochemical performance of multi-layered BiOx–TiO2/Ti electrodes for degradation of phenol and production of molecular hydrogen in water. J Hazard Mater 211:47–54Google Scholar
  109. Pelegrini R, Reyes J, Durán N, Zamora PP, De Andrade AR (2000) Photoelectrochemical degradation of lignin. J Appl Electrochem 30:953–958Google Scholar
  110. Peralta-Hernández J, Meas-Vong Y, Rodríguez FJ, Chapman TW, Maldonado MI, Godínez LA (2006) In situ electrochemical and photo-electrochemical generation of the fenton reagent: a potentially important new water treatment technology. Water Res 40:1754–1762Google Scholar
  111. Peralta-Hernández JM, Meas-Vong Y, Rodríguez FJ, Chapman TW, Maldonado MI, Godínez LA (2008) Comparison of hydrogen peroxide-based processes for treating dye-containing wastewater: decolorization and destruction of Orange II azo dye in dilute solution. Dyes Pigments 76:656–662Google Scholar
  112. Phutdhawong W, Chowwanapoonpohn S, Buddhasukh D (2000) Electrocoagulation and subsequent recovery of phenolic compounds. Anal Sci 16:1083–1084Google Scholar
  113. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84Google Scholar
  114. Pimentel M, Oturan N, Dezotti M, Oturan MA (2008) Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl Catal B Environ 83:140–149Google Scholar
  115. Polcaro AM, Mascia M, Palmas S, Vacca A (2002) Kinetic study on the removal of organic pollutants by an electrochemical oxidation process. Ind Eng Chem Res 41:2874–2881Google Scholar
  116. Polcaro AM, Vacca A, Palmas S, Mascia M (2003) Electrochemical treatment of wastewater containing phenolic compounds: oxidation at boron-doped diamond electrodes. J Appl Electrochem 33:885–892Google Scholar
  117. Polcaro AM, Vacca A, Mascia M, Palmas S (2005) Oxidation at boron doped diamond electrodes: an effective method to mineralise triazines. Electrochim Acta 50:1841–1847Google Scholar
  118. Polcaro AM, Vacca A, Mascia M, Palmas S, Ruiz JR (2009) Electrochemical treatment of waters with BDD anodes: kinetics of the reactions involving chlorides. J Appl Electrochem 39:2083–2092Google Scholar
  119. Rodriguez J, Rodrigo MA, Panizza M, Cerisola G (2009) Electrochemical oxidation of acid yellow 1 using diamond anode. J Appl Electrochem 39:2285–2289Google Scholar
  120. Rooze J, Rebrov EV, Schouten JC, Keurentjes JT (2013) Dissolved gas and ultrasonic cavitation—a review. Ultrason Sonochem 20(1):1–11Google Scholar
  121. Ruiz EJ, Ortega-Borges R, Jurado JL, Chapman T, Meas Y (2009) Simultaneous anodic and cathodic production of sodium percarbonate in aqueous solution. Electrochem Solid-State 12:E1–E4Google Scholar
  122. Ruiz EJ, Arias C, Brillas E, Hernández-Ramírez A, Peralta-Hernández JM (2011a) Mineralization of Acid Yellow 36 azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode. Chemosphere 82:495–501Google Scholar
  123. Ruiz EJ, Hernández-Ramírez A, Peralta-Hernández JM, Arias C, Brillas E (2011b) Application of solar photoelectro-Fenton technology to azo dyes mineralization: effect of current density, Fe2+ and dye concentrations. Chem Eng J 171:385–392Google Scholar
  124. Sáez C, Rodrigo MA, Cañizares P (2008) Electrosynthesis of ferrates with diamond anodes. AIChE J 54:1600–1607Google Scholar
  125. Sáez C, Cañizares P, Sánchez-Carretero A, Rodrigo M (2010a) Electrochemical synthesis of perbromate using conductive-diamond anodes. J Appl Electrochem 40:1715–1719Google Scholar
  126. Sáez V, Esclapez MD, Tudela I, Bonete P, Louisnard O, González-García J (2010b) 20 kHz sonoelectrochemical degradation of perchloroethylene in sodium sulfate aqueous media: Influence of the operational variables in batch mode. J Hazard Mater 183:648–654Google Scholar
  127. Sáez V, Tudela I, Esclapez MD, Bonete P, Louisnard O, González-García J (2011) Sonoelectrochemical degradation of perchloroethylene in water: enhancement of the process by the absence of background electrolyte. Chem Eng J 168:649–655Google Scholar
  128. Salazar R, Garcia-Segura S, Ureta-Zañartu MS, Brillas E (2011) Degradation of disperse azo dyes from waters by solar photoelectro-Fenton. Electrochim Acta 56:6371–6379Google Scholar
  129. Salazar R, Brillas E, Sirés I (2012) Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye Disperse Blue 3. Appl Catal B Environ 115-116:107–116Google Scholar
  130. Sánchez-Carretero A, Sáez C, Cañizares P, Rodrigo M (2011) Electrochemical production of perchlorates using conductive diamond electrolyses. Chem Eng J 166:710–714Google Scholar
  131. Sapkal RT, Shinde SS, Mahadik MA, Mohite VS, Waghmode TR, Govindwar SP, Rajpure KY, Bhosale CH (2012) Photoelectrocatalytic decolorization and degradation of textile effluent using ZnO thin films. J Photochem Photobiol B 114:102–107Google Scholar
  132. Scott-Emuakpor E, Kruth A, Todd M, Raab A, Paton G, Macphee D (2012) Remediation of 2,4-dichlorophenol contaminated water by visible light-enhanced WO3 photoelectrocatalysis. Appl Catal B Environ 123–124:433–439Google Scholar
  133. Serrano K, Michaud P, Comninellis C, Savall A (2002) Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochim Acta 48:431–436Google Scholar
  134. Shih Y-J, Putra WN, Huang Y–H, Tsai J–C (2012) Mineralization and deflourization of 2,2,3,3-tetrafluoro-1-propanol (TFP) by UV/persulfate oxidation and sequential adsorption. Chemosphere 89:1262–1266Google Scholar
  135. Siddique M, Farooq R, Khan ZM, Khan Z, Shaukat S (2011) Enhanced decomposition of reactive blue 19 dye in ultrasound assisted electrochemical reactor. Ultrason Sonochem 18:190–196Google Scholar
  136. Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229Google Scholar
  137. Sirés I, Garrido JA, Rodríguez RM, Cabot PL, Centellas F, Arias C, Brillas E (2006a) Electrochemical degradation of paracetamol from water by catalytic action of Fe2+, Cu2+, and UVA light on electrogenerated hydrogen peroxide. J Electrochem Soc 153:D1–D9Google Scholar
  138. Sirés I, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Arias C, Brillas E (2006b) Electrochemical degradation of clofibric acid in water by anodic oxidation: comparative study with platinum and boron-doped diamond electrodes. Electrochim Acta 52:75–85Google Scholar
  139. Sirés I, Garrido JA, Rodríguez RM, Brillas E, Oturan N, Oturan MA (2007a) Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B Environ 72:382–394Google Scholar
  140. Sirés I, Oturan N, Oturan MA, Rodríguez RM, Garrido JA, Brillas E (2007b) Electro-Fenton degradation of antimicrobials triclosan and triclocarban. Electrochim Acta 52:5493–5503Google Scholar
  141. Sirés I, Centellas F, Garrido JA, Rodríguez RM, Arias C, Cabot P-L, Brillas E (2007c) Mineralization of clofibric acid by electrochemical advanced oxidation processes using a boron-doped diamond anode and Fe2+ and UVA light as catalysts. Appl Catal B Environ 72:373–381Google Scholar
  142. Sirés I, Oturan N, Oturan MA (2010) Electrochemical degradation of β-blockers. Studies on single and multicomponent synthetic aqueous solutions. Water Res 44:3109–3120Google Scholar
  143. Skoumal M, Rodriguez RM, Cabot PL, Centellas F, Garrido JA, Arias C, Brillas E (2009) Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes. Electrochim Acta 54:2077–2085Google Scholar
  144. Sun Y, Pignatello JJ (1993a) Activation of hydrogen peroxide by iron (III) chelates for abiotic degradation of herbicides and insecticides in water. J Agric Food Chem 41:308–312Google Scholar
  145. Sun Y, Pignatello JJ (1993b) Photochemical reactions involved in the total mineralization of 2,4-D by iron (3+)/hydrogen peroxide/UV. Environ Sci Technol 27:304–310Google Scholar
  146. Tsitonaki A, Petri B, Crimi M, Mosbæk H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40:55–91Google Scholar
  147. Urtiaga A, Rueda A, Anglada Á, Ortiz I (2009) Integrated treatment of landfill leachates including electrooxidation at pilot plant scale. J Hazard Mater 166:1530–1534Google Scholar
  148. Walling C (1998) Intermediates in the reactions of Fenton type reagents. Acc Chem Res 31:155–157Google Scholar
  149. Wang A, Qu J, Liu H, Ru J (2008) Mineralization of an azo dye Acid Red 14 by photoelectro-Fenton process using an activated carbon fiber cathode. Appl Catal B Environ 84:393–399Google Scholar
  150. Wang A, Li Y-Y, Estrada AL (2011) Mineralization of antibiotic sulfamethoxazole by photoelectro-Fenton treatment using activated carbon fiber cathode and under UVA irradiation. Appl Catal B Environ 102:378–386Google Scholar
  151. Weiss E, Groenen-Serrano K, Savall A (2008a) A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes. J Appl Electrochem 38:329–337Google Scholar
  152. Weiss E, Sáez C, Groenen-Serrano K, Cañizares P, Savall A, Rodrigo M (2008b) Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes. J Appl Electrochem 38:93–100Google Scholar
  153. Xie Y-B, Li X (2006) Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2–Ti mesh and reticulated vitreous carbon electrodes. Mater Chem Phys 95:39–50Google Scholar
  154. Xin Y, Liu H, Han L, Zhou Y (2011) Comparative study of photocatalytic and photoelectrocatalytic properties of alachlor using different morphology TiO2/Ti photoelectrodes. J Hazard Mater 192:1812–1818Google Scholar
  155. Zhang H, Zhang D, Zhou J (2006) Removal of COD from landfill leachate by electro-Fenton method. J Hazard Mater 135:106–111Google Scholar
  156. Zhang Z, Yuan Y, Liang L, Cheng Y, Shi G, Jin L (2008) Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation. J Hazard Mater 158:517–522Google Scholar
  157. Zhang A, Zhou M, Liu L, Wang W, Jiao Y, Zhou Q (2010) A novel photoelectrocatalytic system for organic contaminant degradation on a TiO2 nanotube (TNT)/Ti electrode. Electrochim Acta 55:5091–5099Google Scholar
  158. Zhao X, Qu J, Liu H, Qiang Z, Liu R, Hu C (2009) Photoelectrochemical degradation of anti-inflammatory pharmaceuticals at Bi2MoO6–boron-doped diamond hybrid electrode under visible light irradiation. Appl Catal B Environ 91:539–545Google Scholar
  159. Zhao H, Wang Y, Wang Y, Cao T, Zhao G (2012) Electro-fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode: high activity, wide pH range and catalytic mechanism. Appl Catal B-Environ 125:120–127Google Scholar
  160. Zhou M, Tan Q, Wang Q, Jiao Y, Oturan N, Oturan MA (2012) Degradation of organics in reverse osmosis concentrate by electro-Fenton process. J Hazard Mater 215–216:287–293Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ignasi Sirés
    • 1
  • Enric Brillas
    • 1
  • Mehmet A. Oturan
    • 2
  • Manuel A. Rodrigo
    • 3
  • Marco Panizza
    • 4
  1. 1.Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de QuímicaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Laboratoire Géomatériaux et Environnement (LGE)Université Paris-EstMarne-la-Vallée Cedex 2France
  3. 3.Department of Chemical Engineering, Faculty of Chemical Sciences and TechnologiesUniversidad de Castilla La ManchaCiudad RealSpain
  4. 4.Department of Civil, Chemical and Environmental EngineeringUniversity of GenoaGenoaItaly

Personalised recommendations