Environmental Science and Pollution Research

, Volume 21, Issue 24, pp 13689–13702 | Cite as

Development of a reference artificial sediment for chemical testing adapted to the MELA sediment contact assay

  • Florane Le Bihanic
  • Prescilla Perrichon
  • Laure Landi
  • Christelle Clérandeau
  • Karyn Le Menach
  • Hélène Budzinski
  • Xavier Cousin
  • Jérôme Cachot
PAHs and fish – Exposure monitoring and adverse effects – from molecular to individual level

Abstract

Most persistent organic pollutants, due to their hydrophobic properties, accumulate in aquatic sediments and represent a high risk for sediment quality. To assess the toxicity of hydrophobic pollutants, a novel approach was recently proposed as an alternative to replace, refine and reduce animal experimentation: the medaka embryo–larval sediment contact assay (MELAc). This assay is performed with Japanese medaka embryos incubated on a natural sediment spiked with the compound being tested. With the aim of improving this assay, our study developed a reference exposure protocol with an artificial sediment specifically designed to limit natural sediment composition uncertainties and preparation variability. The optimum composition of the new artificial sediment was tested using a model polycyclic aromatic hydrocarbon (PAH), fluoranthene. The sediment was then validated with two other model PAHs, benz[a]anthracene and benzo[a]pyrene. Various developmental end points were recorded, including survival, embryonic heartbeat, hatching delay, hatching success, larval biometry and abnormalities. The final artificial sediment composition was set at 2.5 % dry weight (dw) Sphagnum peat, 5 % dw kaolin clay and 92.5 % dw silica of 0.2- to 0.5-mm grain size. In contrast with natural sediments, the chemical components of this artificial matrix are fully defined and readily identifiable. It is totally safe for fish embryos and presents relatively high sorption capacities for hydrophobic compounds. Studies with other hydrophobic and metallic contaminants and mixtures should be performed to further validate this artificial sediment.

Keywords

Artificial sediment Spiked sediment PAHs Japanese medaka embryos Embryotoxicity Teratogenicity 

Abbreviations

PAH

Polycyclic aromatic hydrocarbon

Fluo

Fluoranthene

BaA

Benz[a]anthracene

BaP

Benzo[a]pyrene

dpf

Days post-fertilisation

MELA

Medaka embryo–larval assay

dw

Dry weight

ERS

Egg rearing solution

ELS

Early life stage

Supplementary material

11356_2014_2607_MOESM1_ESM.docx (126 kb)
ESM 1(DOCX 126 kb)
11356_2014_2607_MOESM2_ESM.docx (35 kb)
ESM 2(DOCX 34.6 kb)
11356_2014_2607_MOESM3_ESM.docx (35 kb)
ESM 3(DOCX 34.8 kb)

References

  1. Akkanen J, Kukkonen JVK (2003) Measuring the bioavailability of two hydrophobic organic compounds in the presence of dissolved organic matter. Environ Toxicol Chem 22(3):518–524CrossRefGoogle Scholar
  2. Akkanen J, Tuikka A, Kukkonen JVK (2012) On the borderline of dissolved and particulate organic matter: partitioning and bioavailability of polycyclic aromatic hydrocarbons. Ecotoxicol Environ Saf 78:91–98CrossRefGoogle Scholar
  3. ATSDR (1995) Toxicological profile for polycyclic aromatic hydrocarbons. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GAGoogle Scholar
  4. Barjhoux I, Baudrimont M, Morin B, Landi L, Gonzalez P, Cachot J (2012) Effects of copper and cadmium spiked-sediments on embryonic development of Japanese medaka (Oryzias latipes). Ecotoxicol Environ Saf 79:272–282CrossRefGoogle Scholar
  5. Barron MG, Heintz R, Rice SD (2004) Relative potency of PAHs and heterocycles as aryl hydrocarbon receptor agonists in fish. Mar Environ Res 58(2–5):95–100CrossRefGoogle Scholar
  6. Baumard P, Budzinski H, Garrigues P (1998) PAHs in Arcachon Bay, France: origin and biomonitoring with caged organisms. Mar Pollut Bull 36(8):577–586CrossRefGoogle Scholar
  7. Baumard P, Budzinski H, Garrigues P, Narbonne JF, Burgeot T, Michel X, Bellocq J (1999) Polycyclic aromatic hydrocarbon (PAH) burden of mussels (Mytilus sp.) in different marine environments in relation with sediment PAH contamination, and bioavailability. Mar Environ Res 47(5):415–439CrossRefGoogle Scholar
  8. Belanger SE, Balon EK, Rawlings JM (2010) Saltatory ontogeny of fishes and sensitive early life stages for ecotoxicology tests. Aquat Toxicol 97(2):88–95CrossRefGoogle Scholar
  9. Benlahcen KT, Chaoui A, Budzinski H, Bellocq J, Garrigues P (1997) Distribution and sources of polycyclic aromatic hydrocarbons in some Mediterranean coastal sediments. Mar Pollut Bull 34(5):298–305CrossRefGoogle Scholar
  10. Bittner M, Macikova P, Giesy JP, Hilscherova K (2011) Enhancement of AhR-mediated activity of selected pollutants and their mixtures after interaction with dissolved organic matter. Environ Int 37(5):960–964CrossRefGoogle Scholar
  11. Bouloubassi I, Méjanelle L, Pete R, Fillaux J, Lorre A, Point V (2006) PAH transport by sinking particles in the open Mediterranean Sea: a 1 year sediment trap study. Mar Pollut Bull 52(5):560–571CrossRefGoogle Scholar
  12. Budzinski H, Letellier M, Thompson S, Le Menach K, Garrigues P (2000) Combined protocol for the analysis of polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs) from sediments using focussed microwave assisted (FMW) extraction at atmospheric pressure. Fresenius J Anal Chem 367(2):165–171CrossRefGoogle Scholar
  13. Cachot J, Geffard O, Augagneur S, Lacroix S, Le Menach K, Peluhet L, Couteau J, Denier X, Devier MH, Pottier D, Budzinski H (2006) Evidence of genotoxicity related to high PAH content of sediments in the upper part of the Seine estuary (Normandy, France). Aquat Toxicol 79(3):257–267CrossRefGoogle Scholar
  14. Cachot J, Law M, Pottier D, Peluhet L, Norris M, Budzinski H, Winn R (2007) Characterization of toxic effects of sediment-associated organic pollutants using the λ transgenic medaka. Environ Sci Technol 41(22):7830–7836CrossRefGoogle Scholar
  15. Cachot J, Minier C, Law M, Didier PC, Schleis J, Peluhet L, Norris M, Budzinski H, Winn R (2008) The use of embryos of the Lambda cII transgenic medaka to assess short and long term effects of sediment-sorbed pollutants: application to sediments of the Seine estuary (Normandy, France). Mar Environ Res 66(1):65–65Google Scholar
  16. Cailleaud K, Forget-Leray J, Souissi S, Lardy S, Augagneur S, Budzinski H (2007) Seasonal variation of hydrophobic organic contaminant concentrations in the water-column of the Seine estuary and their transfer to a planktonic species Eurytemora affinis (Calanoïd, copepod). Part 2: alkylphenol–polyethoxylates. Chemosphere 70(2):281–287CrossRefGoogle Scholar
  17. Cailleaud K, Forget-Leray J, Peluhet L, LeMenach K, Souissi S, Budzinski H (2009) Tidal influence on the distribution of hydrophobic organic contaminants in the Seine estuary and biomarker responses on the copepod Eurytemora affinis. Environ Pollut 157(1):64–71CrossRefGoogle Scholar
  18. Döring UM, Marschner B (1998) Water solubility enhancement of benzo(a)pyrene and 2,2′,5,5′-terachlorobiphenyl by dissolved organic matter (DOM). Phys Chem Earth 23(2):193–197CrossRefGoogle Scholar
  19. EC (2006) Regulation (EC) No. 1907/2006 of the European Parliament and of the council concerning the registration, evaluation and authorization of chemicals (REACh). Off J Eur Union vol L 396Google Scholar
  20. EC (2010) Directive 2010/63/EU of the European Parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Off J Eur Union vol L276Google Scholar
  21. Embry MR, Belanger SE, Braunbeck TA, Galay-Burgos M, Halder M, Hinton DE, Léonard MA, Lillicrap A, Norberg-King T, Whale G (2010) The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97(2):79–87CrossRefGoogle Scholar
  22. Etcheber H, Relexans J-C, Beliard M, Weber O, Buscail R, Heussner S (1999) Distribution and quality of sedimentary organic matter on the Aquitanian margin (Bay of Biscay). Deep-Sea Res II Top Stud Oceanogr 46(10):2249–2288CrossRefGoogle Scholar
  23. Fanget B, Devos O, Naffrechoux E (2002) Pyrene transfer from clay particles to water: the role of humic acid. Rev Sci Eau 15:95–108Google Scholar
  24. Farwell A, Nero V, Croft M, Bal P, Dixon DG (2006) Modified Japanese medaka embryo–larval bioassay for rapid determination of developmental abnormalities. Arch Environ Contam Toxicol 51(4):600–607CrossRefGoogle Scholar
  25. Guasch H, Ginebreda A, Geiszinger A, Akkanen J, Slootweg T, Mäenpää K, Leppänen M, Agbo S, Gallampois C, Kukkonen JK (2012) Bioavailability of organic contaminants in freshwater environments. In: Guasch H, Ginebreda A, Geiszinger A (Eds), Emerging and priority pollutants in rivers. The handbook of environmental chemistry. Springer, Berlin, pp 25–53Google Scholar
  26. Harris JRW, Cleary JJ, Valkirs AO (1996) Particle–water partitioning and the role of sediments as a sink and secondary source of TBT. In: Champ MA, Seligman PF (eds) Organotin. Springer, the Netherlands, pp 459–473CrossRefGoogle Scholar
  27. Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003) A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soils Sediments 3(3):197–207CrossRefGoogle Scholar
  28. Hornung MW, Cook PM, Flynn KM, Lothenbach DB, Johnson RD, Nichols JW (2004) Use of multi-photon laser-scanning microscopy to describe the distribution of xenobiotic chemicals in fish early life stages. Aquat Toxicol 67(1):1–11CrossRefGoogle Scholar
  29. Höss S, Ahlf W, Fahnenstich C, Gilberg D, Hollert H, Melbye K, Meller M, Hammers-Wirtz M, Heininger P, Neumann-Hensel H, Ottermanns R, Ratte HT, Seiler TB, Spira D, Weber J, Feiler U (2010) Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination—determination of toxicity thresholds. Environ Pollut 158(9):2999–3010CrossRefGoogle Scholar
  30. Hsu P, Matthäi A, Heise S, Ahlf W (2007) Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe. Environ Pollut 148(3):817–823CrossRefGoogle Scholar
  31. Incardona JP, Collier TK, Scholz NL (2004) Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 196(2):191–205CrossRefGoogle Scholar
  32. Incardona JP, Carls MG, Teraoka H, Sloan CA, Collier TK, Scholz NL (2005) Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development. Environ Health Perspect 113(12):1755–1762CrossRefGoogle Scholar
  33. Incardona JP, Day HL, Collier TK, Scholz NL (2006) Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism. Toxicol Appl Pharmacol 217(3):308–321CrossRefGoogle Scholar
  34. Incardona JP, Linbo TL, Scholz NL (2011) Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. Toxicol Appl Pharmacol 257(2):242–249CrossRefGoogle Scholar
  35. Iwamatsu T (2004) Stages of normal development in the medaka Oryzias latipes. Mech Dev 121(7–8):605–618CrossRefGoogle Scholar
  36. Kosmehl T, Hallare AV, Reifferscheid G, Manz W, Braunbeck T, Hollert H (2006) A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos. Environ Toxicol Chem 25(8):2097–2106. doi:10.1897/05-460r.1 CrossRefGoogle Scholar
  37. Kwon JH, Katz LE, Liljestrand HM (2006) Use of a parallel artificial membrane system to evaluate passive absorption and elimination in small fish. Environ Toxicol Chem 25:3083–3092CrossRefGoogle Scholar
  38. Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol C Toxicol Pharmacol 149(2):196–209CrossRefGoogle Scholar
  39. Laor Y, Farmer WJ, Aochi Y, Strom PF (1998) Phenanthrene binding and sorption to dissolved and to mineral-associated humic acid. Water Res 32(6):1923–1931CrossRefGoogle Scholar
  40. Matson CW, Timme-Laragy AR, Di Giulio RT (2008) Fluoranthene, but not benzo[a]pyrene, interacts with hypoxia resulting in pericardial effusion and lordosis in developing zebrafish. Chemosphere 74(1):149–154CrossRefGoogle Scholar
  41. Mayer P, Fernqvist MM, Christensen PS, Karlson U, Trapp S (2007) Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions. Environ Sci Technol 41(17):6148–6155CrossRefGoogle Scholar
  42. McElroy AE, Bogler A, Weisbaum D, Norris M, Mendelman LV, Setlow R, Winn R (2006) Uptake, metabolism, mutant frequencies and mutational spectra in λ transgenic medaka embryos exposed to benzo[a]pyrene dosed sediments. Mar Environ Res 62(Supplement 1):S273–S277CrossRefGoogle Scholar
  43. Nia Y, Garnier JM, Rigaud S, Hanna K, Ciffroy P (2011) Mobility of Cd and Cu in formulated sediments coated with iron hydroxides and/or humic acids: a DGT and DGT-PROFS modeling approach. Chemosphere 85(9):1496–1504CrossRefGoogle Scholar
  44. NIST (2008) Certificate of analysis for standard reference material (SRM)1944 New York/New Jersey waterway sediment. National institute of Standards and Technology (NIST), Gaithersburg (22 December 2008)Google Scholar
  45. OECD (1992) Guidelines for the testing of chemicals fish early life stage toxicity test, test no. 210. Section 2: effects on biotic systems. Organization for Economic Cooperation and DevelopmentGoogle Scholar
  46. OECD (2004) Guidelines for the testing of chemicals sediment–water chironomid toxicity test using spiked sediment, test no. 218. Section 2: effects on biotic systems. Organization for Economic Cooperation and DevelopmentGoogle Scholar
  47. Roberts DA (2012) Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments. Environ Int 40:230–243CrossRefGoogle Scholar
  48. Rocha PS, Bernecker C, Strecker R, Mariani CF, Pompêo MLM, Storch V, Hollert H, Braunbeck T (2011) Sediment-contact fish embryo toxicity assay with Danio rerio to assess particle-bound pollutants in the Tietê River Basin (São Paulo, Brazil). Ecotoxicol Environ Saf 74(7):1951–1959CrossRefGoogle Scholar
  49. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis, vol 167. Fisheries Research Board of Canada BulletinGoogle Scholar
  50. Sundberg H, Hanson M, Liewenborg B, Zebühr Y, Broman D, Balk L (2007) Dredging associated effects: maternally transferred pollutants and DNA adducts in feral fish. Environ Sci Technol 41(8):2972–2977CrossRefGoogle Scholar
  51. Sverdrup LE, Nielsen T, Henning Krogh P (2002) Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environ Sci Technol 36:2429–2435CrossRefGoogle Scholar
  52. ter Laak TL, ter Bekke MA, Hermens JLM (2009) Dissolved organic matter enhances transport of PAHs to aquatic organisms. Environ Sci Technol 43(19):7212–7217CrossRefGoogle Scholar
  53. Vicquelin L, Leray-Forget J, Peluhet L, LeMenach K, Deflandre B, Anschutz P, Etcheber H, Morin B, Budzinski H, Cachot J (2011) A new spiked sediment assay using embryos of the Japanese medaka specifically designed for a reliable toxicity assessment of hydrophobic chemicals. Aquat Toxicol 105(3–4):235–245CrossRefGoogle Scholar
  54. Wölz J, Engwall M, Maletz S, Olsman Takner H, van Bavel B, Kammann U, Klempt M, Weber R, Braunbeck T, Hollert H (2008) Changes in toxicity and Ah receptor agonist activity of suspended particulate matter during flood events at the rivers Neckar and Rhine—a mass balance approach using in vitro methods and chemical analysis. Environ Sci Pollut Res 15(7):536–553CrossRefGoogle Scholar
  55. Zielke H (2011) Time-related alterations and other confounding factors in direct sediment contact tests. RWTH AachenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Florane Le Bihanic
    • 1
  • Prescilla Perrichon
    • 2
  • Laure Landi
    • 1
  • Christelle Clérandeau
    • 1
  • Karyn Le Menach
    • 1
  • Hélène Budzinski
    • 1
  • Xavier Cousin
    • 2
    • 3
  • Jérôme Cachot
    • 1
  1. 1.University of Bordeaux, EPOC UMR CNRS 5805Talence CedexFrance
  2. 2.IFREMER, Ecotoxicology laboratoryl’HoumeauFrance
  3. 3.INRA LPGPRennesFrance

Personalised recommendations