Advertisement

Environmental Science and Pollution Research

, Volume 21, Issue 19, pp 11135–11141 | Cite as

Visible-light driven oxidation of gaseous aliphatic alcohols to the corresponding carbonyls via TiO2 sensitized by a perylene derivative

  • Chiara Guarisco
  • Giovanni Palmisano
  • Giuseppe Calogero
  • Rosaria Ciriminna
  • Gaetano Di Marco
  • Vittorio Loddo
  • Mario Pagliaro
  • Francesco Parrino
Photocatalysis: new highlights from JEP 2013

Abstract

Sensitized P25 TiO2 was prepared by wet impregnation with a home-prepared perylene dye, i.e., N,N′-bis(2-(1-piperazino)ethyl)-3,4,9,10-perylene-tetracarboxylic acid diimide dichloride (PZPER). Energy levels of PZPER were found to be compatible with those of TiO2 allowing fast electron transfer. The obtained catalyst has been characterized and used in the gas-phase partial oxidation of aliphatic primary and secondary alcohols, i.e., methanol, ethanol, and 2-propanol. The reaction was carried out under cut-off (λ > 400 nm) simulated solar radiation in O2 atmosphere. The perylene derivative allowed a good absorbance of visible radiation thanks to its low optical energy gap (2.6 eV) which was evaluated by cyclic voltammetry. The optimal organic sensitizing amount was found to be 5.6 % w/w in terms of yield in carbonyl derivatives. Moreover, no change in reactivity/selectivity was observed after 10-h irradiation thus confirming the catalyst stability. Yields into formaldehyde, acetaldehyde, and acetone were 67, 70, and 96 %, respectively. No significant amounts of organic byproducts were detected but for methanol oxidation, whereas a minor amount of the substrate degraded to CO2.

Keywords

Perylene-sensitized TiO2 Visible light photocatalysis Aliphatic alcohol oxidation 

Notes

Acknowledgments

GP gratefully acknowledges Prof. Giacomo Ruggeri of University of Pisa and Dr. Sedat Yurdakal of Afyon Kocatepe University for assistance during the reproduction of the synthesis of the perylene derivative PZPER.

References

  1. Augugliaro V, Caronna T, Loddo V, Marcì G, Palmisano G, Palmisano L, Yurdakal S (2008) Oxidation of aromatic alcohols in irradiated aqueous suspensions of commercial and home‐prepared rutile TiO2: a selectivity study. Chem Eur J 14:4640–4646CrossRefGoogle Scholar
  2. Augugliaro V, Camera Roda G, Loddo V, Palmisano G, Palmisano L, Parrino F, Puma MA (2011) Synthesis of vanillin in water by TiO2 photocatalysis. Appl Catal B Environ 111–112:555–561Google Scholar
  3. Augugliaro V, Bellardita M, Loddo V, Palmisano G, Palmisano L, Yurdakal S (2012) Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J Photochem Photobiol C: Photochem Rev 13:224–245CrossRefGoogle Scholar
  4. Connolly ML (1983) Analytical molecular surface calculation. J Appl Cryst 16:548–558CrossRefGoogle Scholar
  5. Dai ZM, Burgeth G, Parrino F, Kisch H (2009) Visible light photocatalysis by a Titania-Rhodium(III) complex. J Organomet Chem 694:1049–1054CrossRefGoogle Scholar
  6. Deng P, Liu L, Ren S, Li H, Zhang Q (2012) N-acylation: an effective method for reducing the LUMO energy levels of conjugated polymers containing five-membered lactam units. Chem Commun 48:6960–6962CrossRefGoogle Scholar
  7. Donati F, Pucci A, Ruggeri G (2009) Temperature and chemical environment effects on the aggregation extent of water soluble perylene dye into vinyl alcohol-containing polymers. Phys Chem Chem Phys 11:6276–6282CrossRefGoogle Scholar
  8. Hashimoto M, Kashiwagi K, Kitaoka S (2011) A nitrogen doped TiO2 layer on Ti metal for the enhanced formation of apatite. J Mater Sci Mater Med 22:2013–2018CrossRefGoogle Scholar
  9. Jiang D, Xu Y, Wu D, Sun Y (2008) Visible-light responsive dye-modified TiO2 photocatalyst. J Solid State Chem 181:593–602CrossRefGoogle Scholar
  10. Kim JW, Kim SH, Yu KH, Fujishima A, Kim YS (2010) Enhanced photocatalytic activity of 3,4,9,10-perylenetetracarboxylic diimide modified titanium dioxide under visible light irradiation. Bull Korean Chem Soc 31:2849–2853CrossRefGoogle Scholar
  11. Marcì G, García-López E, Bellardita M, Parisi F, Colbeau-Justin C, Sorgues S, Liotta LF, Palmisano L (2013) Keggin heteropolyacid H3PW12O40 supported on different oxides for catalytic and catalytic photo-assisted propene hydration. Phys Chem Chem Phys 15:13329–13342CrossRefGoogle Scholar
  12. Mele G, Ciccarella G, Vasapollo G, García-López E, Palmisano L, Schiavello M (2002) Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 samples impregnated with Cu(II)-phthalocyanine. Appl Catal B Environ 38:309–319CrossRefGoogle Scholar
  13. Muggli DS, Falconer JL (1998) Catalyst design to change selectivity of photocatalytic oxidation. J Catal 175:213–219CrossRefGoogle Scholar
  14. Murcia JJ, Hidalgo MC, Navìo JA, Vaiano V, Ciambelli P, Sannino D (2012a) Photocatalytic ethanol oxidative dehydrogenation over Pt/TiO2: effect of the addition of blue phosphors. J Photoen 2012:1–9CrossRefGoogle Scholar
  15. Murcia JJ, Hidalgo MC, Navìo JA, Vaiano V, Ciambelli P, Sannino D (2012b) Ethanol partial photoxidation on Pt/TiO2 catalysts as green route for acetaldehyde synthesis. Catal Today 196:101–109CrossRefGoogle Scholar
  16. Nasalevich MA, Kozlova EA, Lyubina TP, Vorontsov AV (2012) Photocatalytic oxidation of ethanol and isopropanol vapors on cadmium sulfide. J Catal 287:138–148CrossRefGoogle Scholar
  17. Ohno T, Sarukawa K, Tokieda K, Michio M (2001) Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal 203:82–86CrossRefGoogle Scholar
  18. Ooyama Y, Nagano T, Inoue S, Imae I, Komaguchi K, Harima Y (2010) Dye-sensitized solar cells based on D–π–A fluorescent dyes with pyridine ring forming strong interaction with nanocrystalline TiO2. Bull Chem Soc Japan 83:1113–1121CrossRefGoogle Scholar
  19. Palmisano G, Augugliaro V, Pagliaro M, Palmisano L (2007) Photocatalysis: a promising route for 21st century organic chemistry. Chem Commun 33:3425–3427CrossRefGoogle Scholar
  20. Palmisano G, Gutiérrez MC, Ferrer ML, Gil-Luna MD, Augugliaro V, Yurdakal S, Pagliaro M (2008) TiO2/ORMOSIL Thin films doped with phthalocyanine dyes: new photocatalytic devices activated by solar light. J Phys Chem C 112:2667–2670CrossRefGoogle Scholar
  21. Park J, Choi K, Lee JH, Hwang C, Choi D, Lee JW (2013) Fabrication and characterization of metal-doped TiO2 nanofibers for photocatalytic reactions. Mater Lett 97:64–66CrossRefGoogle Scholar
  22. Parrino F, Ramakrishnan A, Kisch H (2008) Semiconductor-photocatalyzed sulfoxidation of alkanes. Angew Chem Int Ed 47:7107–7109CrossRefGoogle Scholar
  23. Parrino F, Augugliaro V, Camera-Roda G, Loddo V, López-Muñoz MJ, Márquez-Álvarez C, Palmisano G, Palmisano L, Puma MA (2012) Visible-light-induced oxidation of trans-ferulic acid by TiO2 photocatalysis. J Catal 295:254–260CrossRefGoogle Scholar
  24. Pillai UR, Sahle–Demessie E (2002) Selective oxidation of alcohols in gas phase using light-activated titanium dioxide. J Catal 211:434–444CrossRefGoogle Scholar
  25. Qin G, Sun Z, Wu Q, Lin L, Liang M, Xue S (2011) Dye-sensitized TiO2 film with bifunctionalized zones for photocatalytic degradation of 4-cholophenol. J Hazard Mater 192:599–604CrossRefGoogle Scholar
  26. Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CRA, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol AA (2013) Band alignment of rutile and anatase TiO2. Nature Mater 12:798–801CrossRefGoogle Scholar
  27. Serpone N, Pelizzetti E (1989) Photocatalysis. Fundamentals and applications, Wiley, New YorkGoogle Scholar
  28. Triantis TM, Fotiou T, Kaloudis T, Kontos AG, Falaras P, Dionysiou DD, Pelaez M, Hiskia A (2012) Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO2. J Hazard Mater 211–212:196–202CrossRefGoogle Scholar
  29. Wang C, Li J, Mele G, Yang G, Zhang F, Palmisano L, Vasapollo G (2007) Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation. Appl Catal B Environ 76:218–226CrossRefGoogle Scholar
  30. Wang C, Li J, Mele J, Duan M, Lu X, Palmisano L, Vasapollo G, Zhang F (2010a) The photocatalytic activity of novel, substituted porphyrin/TiO2-based composites. Dye Pigment 84:183–189CrossRefGoogle Scholar
  31. Wang Q, Zhang M, Chen C, Ma W, Zhao J (2010b) Photocatalytic aerobic oxidation of alcohols on TiO2: the acceleration effect of a Brønsted acid. Angew Chem Int Ed 49:7976–7979CrossRefGoogle Scholar
  32. Yang Teoh W, Amal R, Mädler L, Pratsinis SE (2007) Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid. Catal Today 120:203–213CrossRefGoogle Scholar
  33. Youngblood WJ, Lee SA, Maeda K, Mallouk TE (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc Chem Res 42:1966–1973CrossRefGoogle Scholar
  34. Yurdakal S, Augugliaro V, Loddo V, Palmisano G, Palmisano L (2012) Enhancing selectivity in photocatalytic formation of p-anisaldehyde in aqueous suspension under solar light irradiation via TiO2 N-Doping. New J Chem 36:1762–1768CrossRefGoogle Scholar
  35. Zhang M, Wang Q, Chen C, Zang L, Ma W, Zhao J (2009) Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: oxygen isotope studies. Angew Chem Int Ed 48:6081–6084CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chiara Guarisco
    • 1
  • Giovanni Palmisano
    • 2
  • Giuseppe Calogero
    • 2
  • Rosaria Ciriminna
    • 1
  • Gaetano Di Marco
    • 2
  • Vittorio Loddo
    • 3
  • Mario Pagliaro
    • 1
  • Francesco Parrino
    • 3
  1. 1.ISMN – CNRPalermoItaly
  2. 2.IPCF – CNRMessinaItaly
  3. 3.“Schiavello-Grillone” Photocatalysis Group – DEIMUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations