Environmental Science and Pollution Research

, Volume 21, Issue 20, pp 11699–11707 | Cite as

Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine

  • Melanie Kah
  • Patrick Machinski
  • Petra Koerner
  • Karen Tiede
  • Renato Grillo
  • Leonardo Fernandes Fraceto
  • Thilo Hofmann
14th EuCheMS International Conference on Chemistry and the Environment (ICCE 2013, Barcelona, June 25 - 28, 2013)


For the first time, regulatory protocols defined in the OECD guidelines were applied to determine the fate properties of a nanopesticide in two agricultural soils with contrasting characteristics. The nanoformulation studied had no effect on the degradation kinetics of atrazine indicating that (1) the release of atrazine from the polymer nanocarriers occurred rapidly relative to the degradation kinetics (half-lives 36–53 days) and/or that (2) atrazine associated with the nanocarriers was subject to biotic or abiotic degradation. Sorption coefficients, derived from a batch and a centrifugation technique at a realistic soil-to-solution ratio, were higher for the nanoformulated atrazine than for the pure active ingredient. Results indicate that the nanoformulation had an effect on the fate of atrazine. However, since the protocols applied were designed to assess solutes, conclusions about the transport of atrazine loaded onto the nanocarriers should be made extremely cautiously. The centrifugation method applied over time (here over 7 days) appears to be a useful tool to indirectly assess the durability of nanopesticides under realistic soil-to-solution ratios and estimate the period of time during which an influence on the fate of the active ingredient may be expected. More detailed investigations into the bioavailability and durability of nanopesticides are necessary and will require the development of novel methods suitable to address both the “nano” and “organic” characteristics of polymer-based nanopesticides.


Pesticide Nanoparticle Sorption Degradation OECD Risk assessment Nanocapsule Plant protection 


  1. Addiscott TM (1977) Simple computer model for leaching in structured soils. J Soil Sci 28(4):554–563CrossRefGoogle Scholar
  2. Beulke S, Brown CD (2006) Impact of correlation between pesticide parameters on estimates of environmental exposure. Pest Manag Sci 62(7):603–609. doi:10.1002/ps.1198 CrossRefGoogle Scholar
  3. Beulke S, van Beinum W (2012) Guidance on how aged sorption studies for pesticides should be conducted, analysed and used in regulatory assessments. http://www.pesticides.gov.uk/Resources/CRD/Migrated-Resources/Documents/E/EnvFate_Aged_sorption_guidance_final_30_07_2012.pdf. Accessed Sept 2013
  4. Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17(5):326–343. doi:10.1007/s10646-008-0213-1 CrossRefGoogle Scholar
  5. DEFRA (2010) Development of guidance on the implementation of aged soil sorption studies into regulatory exposure assessments. Research report for DEFRA project PS2235. The Food and Environment Research Agency and AlterraGoogle Scholar
  6. Eisler R (2007) Atrazine. Eisler's encyclopedia of environmentally hazardous priority chemicals. Elsevier, AmsterdamGoogle Scholar
  7. Eubeler JP, Bernhard M, Knepper TP (2010) Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. TrAC-Trends Anal Chem 29(1):84–100. doi:10.1016/j.trac.2009.09.005 CrossRefGoogle Scholar
  8. FOCUS (2006) Guidance document on estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU registration. Report of the FOCUS Work Group on Degradation Kinetics, EC document reference Sanco/ 10058/2005, version 2.0. FOCUS, Brussels, BelgiumGoogle Scholar
  9. Ford SC, Price OR, Terry AS (2007) Transport of pesticides to water from slow release formulations: application of current pesticide fate models. In: Del Re AAM, Capri E, Fragoulis G, Trevisan M (eds) Environmental fate and ecological effects of pesticides. La Goliarica Pavese, Pavia, ITGoogle Scholar
  10. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792. doi:10.1021/jf302154y CrossRefGoogle Scholar
  11. Grillo R, AdE SP, Silva de Melo NF, Porto RM, Feitosa LO, Tonello PS, Dias Filho NL, Rosa AH, Lima R, Fraceto LF (2011) Controlled release system for ametryn using polymer microspheres: preparation, characterization and release kinetics in water. J Hazard Mater 186(2–3):1645–1651. doi:10.1016/j.jhazmat.2010.12.044 CrossRefGoogle Scholar
  12. Grillo R, Pereira dos Santos NZ, Maruyama CR, Rosa AH, de Lima R, Fraceto LF (2012) Poly(epsilon-caprolactone)nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231:1–9. doi:10.1016/j.jhazmat.2012.06.019 CrossRefGoogle Scholar
  13. Harper SS (1994) Sorption-desorption and herbicide behavior in soil. Rev Weed Sci 6:207–225Google Scholar
  14. Kah M, Brown CD (2006) Adsorption of ionisable pesticides in soils. In: Ware GW (ed) Reviews of environmental contamination and toxicology, vol 188. Springer, New York, pp 149–217. doi:10.1007/978-0-387-32964-2_5 CrossRefGoogle Scholar
  15. Kah M, Brown CD (2007) Changes in pesticide adsorption with time at high soil to solution ratios. Chemosphere 68(7):1335–1343. doi:10.1016/j.chemosphere.2007.01.024 CrossRefGoogle Scholar
  16. Kah M, Hofmann T (2014) Nanopesticides research: current trends and future priorities. Environ Int 63:224–235. doi:10.1016/j.envint.2013.11.015 Google Scholar
  17. Kah M, Beulke S, Brown CD (2007) Factors influencing degradation of pesticides in soil. J Agric Food Chem 55(11):4487–4492. doi:10.1021/jf0635356 CrossRefGoogle Scholar
  18. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate and exposure modelling. Crit Rev Environ Sci Technol 43:1823–1867. doi:10.1080/10643389.2012.671750 CrossRefGoogle Scholar
  19. Liu J, Legros S, Von der Kammer F, Hofmann T (2013) Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles. Environ Sci Technol 47(9):4113–4120. doi:10.1021/es302447g CrossRefGoogle Scholar
  20. Martinazzo R, Jablonowski ND, Hamacher G, Dick DP, Burauel P (2010) Accelerated degradation of C-14-atrazine in Brazilian soils from different regions. J Agric Food Chem 58(13):7864–7870. doi:10.1021/jf100549d CrossRefGoogle Scholar
  21. Mudhoo A, Garg VK (2011) Sorption, transport and transformation of atrazine in soils, minerals and composts: a review. Pedosphere 21(1):11–25. doi:10.1016/s1002-0160(10)60074-4 CrossRefGoogle Scholar
  22. OECD (2000) Guidelines for the testing of chemicals test no. 106: adsorption-desorption using a batch equilibrium method. Organisation for Economic Co-Operation and Development, Paris, FranceGoogle Scholar
  23. OECD (2002) Guidelines for the testing of chemicals test no. 307: aerobic and anaerobic transformation in soils. Organisation for Economic Co-operation and Development, Paris, FranceGoogle Scholar
  24. Ottofuelling S, Von der Kammer F, Hofmann T (2011) Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior. Environ Sci Technol 45(23):10045–10052. doi:10.1021/es2023225 CrossRefGoogle Scholar
  25. Pathak RK, Dikshit AK (2012) Atrazine and its use. Int J Res Chem Environ 2(1):1–6Google Scholar
  26. Qing S, Yongli S, Yuehong Z, Ting Z, Haoyan S (2013) Pesticide-conjugated polyacrylate nanoparticles: novel opportunities for improving the photostability of emamectin benzoate. Polym Adv Technol 24(2):137–143. doi:10.1002/pat.3060 CrossRefGoogle Scholar
  27. Schlichting E, Blume HP, Stahr K (1995) Bodenkundliches Praktikum. Blackwell, BerlinGoogle Scholar
  28. Shaner D, Brunk G, Nissen S, Westra P, Chen WL (2012) Role of soil sorption and microbial degradation on dissipation of mesotrione in plant-available soil water. J Environ Qual 41(1):170–178. doi:10.2134/jeq2011.0187 CrossRefGoogle Scholar
  29. United States Environmental Protection Agency (US EPA) (2013) http://www.epa.gov/pesticides/reregistration/atrazine/atrazine_update.htm. Accessed Sep 2013
  30. University of Hertfordshire (2013) The Pesticide Properties DataBase developed by the Agriculture & Environment Research Unit, University of Hertfordshire, 2006–2013. http://sitem.herts.ac.uk/aeru/footprint/en/index.htm. Accessed Sep 2013
  31. Viswanath NR, Patil RB, Rangaswami G (1977) Dehydrogenase activity and microbial population in a red sandy soil amended and unamended with incubation. Zentralblatt fuer Bakteriologie Parasitenkunde Infektionskrankheiten und Hygiene Zweite Naturwissenschaftliche Abteilung Allgemeine Landwirtschaftliche und Technische Mikrobiologie 132 (4):335-339Google Scholar
  32. Walker A (2000) A simple centrifugation technique for the extraction of soil solution to permit direct measurement of aqueous phase concentrations of pesticide. In: Cornejo J, Jamet P (eds) Pesticide soil interactions-some current research, methods. pp 173–178Google Scholar
  33. Walker A, Jurado-Exposito M (1998) Adsorption of isoproturon, diuron and metsulfuron-methyl in two soils at high soil : solution ratios. Weed Res 38(3):229–238CrossRefGoogle Scholar
  34. Walker A, Rodriguez-Cruz MS, Mitchell MJ (2005) Influence of ageing of residues on the availability of herbicides for leaching. Environ Pollut 133(1):43–51. doi:10.1016/j.envpol.2004.04.012 CrossRefGoogle Scholar
  35. Yazgan MS, Wilkins RM, Sykas C, Hoque E (2005) Comparison of two methods for estimation of soil sorption for imidacloprid and carbofuran. Chemosphere 60(9):1325–1331. doi:10.1016/j.chemosphere.2005.01.075 CrossRefGoogle Scholar
  36. Zablotowicz RM, Weaver MA, Locke MA (2006) Microbial adaptation for accelerated atrazine mineralization/degradation in Mississippi Delta soils. Weed Sci 54(3):538–547. doi:10.1614/ws-04-179r3.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Melanie Kah
    • 1
  • Patrick Machinski
    • 1
  • Petra Koerner
    • 1
  • Karen Tiede
    • 2
  • Renato Grillo
    • 3
    • 4
  • Leonardo Fernandes Fraceto
    • 3
    • 4
  • Thilo Hofmann
    • 1
  1. 1.Department of Environmental GeosciencesUniversity of ViennaViennaAustria
  2. 2.Food and Environment Research AgencyYorkUK
  3. 3.Department of Environmental EngineeringUNESP–Univ. Estadual PaulistaSorocabaBrazil
  4. 4.Department of Biochemistry, Institute of BiologyUNICAMPCampinasBrazil

Personalised recommendations