Environmental Science and Pollution Research

, Volume 21, Issue 8, pp 5619–5627 | Cite as

Effects of a sulfonylurea herbicide on the soil bacterial community

  • Dallel Arabet
  • Sébastien Tempel
  • Michel Fons
  • Yann Denis
  • Cécile Jourlin-Castelli
  • Joshua Armitano
  • David Redelberger
  • Chantal Iobbi-Nivol
  • Abderrahmane Boulahrouf
  • Vincent Méjean
Research Article

Abstract

Sulfonylurea herbicides are widely used on a wide range of crops to control weeds. Chevalier® OnePass herbicide is a sulfonylurea herbicide intensively used on cereal crops in Algeria. No information is yet available about the biodegradation of this herbicide or about its effect on the bacterial community of the soil. In this study, we collected an untreated soil sample, and another sample was collected 1 month after treatment with the herbicide. Using a high-resolution melting DNA technique, we have shown that treatment with Chevalier® OnePass herbicide only slightly changed the composition of the whole bacterial community. Two hundred fifty-nine macroscopically different clones were isolated from the untreated and treated soil under both aerobic and microaerobic conditions. The strains were identified by sequencing a conserved fragment of the 16S rRNA gene. The phylogenetic trees constructed using the sequencing results confirmed that the bacterial populations were similar in the two soil samples. Species belonging to the Lysinibacillus, Bacillus, Pseudomonas, and Paenibacillus genera were the most abundant species found. Surprisingly, we found that among ten strains isolated from the treated soil, only six were resistant to the herbicide. Furthermore, bacterial overlay experiments showed that only one resistant strain (related to Stenotrophomonas maltophilia) allowed all the sensitive strains tested to grow in the presence of the herbicide. The other resistant strains allowed only certain sensitive strains to grow. On the basis of these results, we propose that there must be several biodegradation pathways for this sulfonylurea herbicide.

Keywords

Sulfonylurea Chevalier® OnePass herbicide Soil bacterial community 16S rDNA Herbicide resistance High-resolution melting DNA Bacterial overlay cultures 

References

  1. Berger BM, Janowitz K, Menne HJ, Hoppe H-H (1998) Comparative study on microbial and chemical transformation of eleven sulfonylurea herbicides in soil. Z Für Pflanzenkrankh Pflanzenschutz 105:611–623Google Scholar
  2. Beyer EM, Duffy MF, Hay JV, Schlueter DD (1988) Sulfonylurea. In: Kearney PC, Kaufman DD (eds) Herbic. Chem. Degrad. Mode Action, Dekker. New York, pp 117–183Google Scholar
  3. Brown HM (1990) Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic Sci 29:263–281. doi:10.1002/ps.2780290304 CrossRefGoogle Scholar
  4. Chanal A, Chapon V, Benzerara K et al (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525. doi:10.1111/j.1462-2920.2005.00921.x CrossRefGoogle Scholar
  5. Cole JR, Wang Q, Cardenas E et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145. doi:10.1093/nar/gkn879 CrossRefGoogle Scholar
  6. Dereeper A, Guignon V, Blanc G et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469. doi:10.1093/nar/gkn180 CrossRefGoogle Scholar
  7. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 5:113. doi:10.1186/1471-2105-5-113 CrossRefGoogle Scholar
  8. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695CrossRefGoogle Scholar
  9. Hang B-J, Hong Q, Xie X-T et al (2012) SulE, a sulfonylurea herbicide de-esterification esterase from Hansschlegelia zhihuaiae S113. Appl Environ Microbiol 78:1962–1968. doi:10.1128/AEM.07440-11 CrossRefGoogle Scholar
  10. He W-H, Wang Y-N, Du X et al (2012) Pseudomonas linyingensis sp. nov.: a novel bacterium isolated from wheat soil subjected to long-term herbicides application. Curr Microbiol 65:595–600. doi:10.1007/s00284-012-0187-3 CrossRefGoogle Scholar
  11. Hemmamda S, Calmon M, Calmon JP (1994) Kinetics and hydrolysis mechanism of chlorsulfuron and metsulfuron-methyl. Pestic Sci 40:71–76. doi:10.1002/ps.2780400112 CrossRefGoogle Scholar
  12. Ismail BS, Goh KM, Kader J (1996) Effects of metsulfuronmethyl on microbial biomass and populations in soils. J Environ Sci Health Part B 31:987–999. doi:10.1080/03601239609373049 CrossRefGoogle Scholar
  13. Johnson M, Zaretskaya I, Raytselis Y et al (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9. doi:10.1093/nar/gkn201 CrossRefGoogle Scholar
  14. Kamrin MA (1997) Pesticide profiles: toxicity, environmental impact, and fate. CRC PressGoogle Scholar
  15. Labrenz M, Banfield JF (2004) Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Microb Ecol 47:205–217. doi:10.1007/s00248-003-1025-8 Google Scholar
  16. Lee Y-T, Cui C-J, Chow EWL et al (2013) Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase. J Med Chem 56:210–219. doi:10.1021/jm301501k CrossRefGoogle Scholar
  17. Li-feng G, Jian-dong J, Xiao-hui L et al (2007) Biodegradation of ethametsulfuron-methyl by Pseudomonas sp. SW4 isolated from contaminated soil. Curr Microbiol 55:420–426. doi:10.1007/s00284-007-9011-x CrossRefGoogle Scholar
  18. Lin X-Y, Yang Y-Y, Zhao Y-H, Fu Q-L (2012) Biodegradation of bensulfuron-methyl and its effect on bacterial community in paddy soils. Ecotoxicol Lond Engl 21:1281–1290. doi:10.1007/s10646-012-0882-7 CrossRefGoogle Scholar
  19. Lu P, Jin L, Liang B et al (2011) Study of biochemical pathway and enzyme involved in metsulfuron-methyl degradation by Ancylobacter sp. XJ-412-1 isolated from soil. Curr Microbiol 62:1718–1725. doi:10.1007/s00284-011-9919-z CrossRefGoogle Scholar
  20. Madigan MT, Martinko JM (2006) Brock Biology of Microorganisms. Pearson Prentice Hall.Google Scholar
  21. Manickam N, Ghosh A, Jain RK, Mayilraj S (2008) Description of a novel indole-oxidizing bacterium Pseudomonas indoloxydans sp. nov., isolated from a pesticide-contaminated site. Syst Appl Microbiol 31:101–107. doi:10.1016/j.syapm.2008.02.002 CrossRefGoogle Scholar
  22. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor LaboratoryGoogle Scholar
  23. Neumann M, Mittelstädt G, Seduk F et al (2009) MocA is a specific cytidylyltransferase involved in molybdopterin cytosine dinucleotide biosynthesis in Escherichia coli. J Biol Chem 284:21891–21898. doi:10.1074/jbc.M109.008565 CrossRefGoogle Scholar
  24. Nicholls PH, Evans A. (1987) The behavior of chlorsulfuron and metsulfuron in soils in relation to incidents of injury to sugar beet. Proc. Br. Crop Prot. Weeds Conf. BCPC Publications, pp 549–556Google Scholar
  25. Sarmah AK, Sabadie J (2002) Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions: a review. J Agric Food Chem 50:6253–6265CrossRefGoogle Scholar
  26. Sondhia S (2009a) Persistence of metsulfuron-methyl in paddy field and detection of its residues in crop produce. Bull Environ Contam Toxicol 83:799–802. doi:10.1007/s00128-009-9822-5 CrossRefGoogle Scholar
  27. Sondhia S (2009b) Leaching behaviour of metsulfuron in two texturally different soils. Environ Monit Assess 154:111–115. doi:10.1007/s10661-008-0381-8 CrossRefGoogle Scholar
  28. Sondhia S, Waseem U, Varma RK (2013) Fungal degradation of an acetolactate synthase (ALS) inhibitor pyrazosulfuron-ethyl in soil. Chemosphere. doi:10.1016/j.chemosphere.2013.07.066 Google Scholar
  29. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577. doi:10.1080/10635150701472164 CrossRefGoogle Scholar
  30. Umbarger HE, Brown B (1958) Isoleucine and valine metabolism in Escherichia coli. VIII. The formation of acetolactate. J Biol Chem 233:1156–1160Google Scholar
  31. Valle A, Boschin G, Negri M et al (2006) The microbial degradation of azimsulfuron and its effect on the soil bacterial community. J Appl Microbiol 101:443–452. doi:10.1111/j.1365-2672.2006.02937.x CrossRefGoogle Scholar
  32. Xu J, Li X, Xu Y et al (2009) Biodegradation of pyrazosulfuron-ethyl by three strains of bacteria isolated from contaminated soils. Chemosphere 74:682–687. doi:10.1016/j.chemosphere.2008.09.078 CrossRefGoogle Scholar
  33. Yin LB, Liu Y, Zhang DY, Zhang SB (2011) Isolation and characterization of Rhodopseudomonas sp. S9-1 capable of degradating pyrazosulfuron-ethyl. Adv Mater Res 356–360:1152–1163. doi:10.4028/www.scientific.net/AMR.356-360.1152 CrossRefGoogle Scholar
  34. Zanardini E, Negri M, Boschin G et al (2002) Biodegradation of chlorsulfuron and metsulfuron-methyl by Aspergillus niger. Sci World J 2:1501–1506. doi:10.1100/tsw.2002.281 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dallel Arabet
    • 1
    • 2
  • Sébastien Tempel
    • 2
  • Michel Fons
    • 2
  • Yann Denis
    • 3
  • Cécile Jourlin-Castelli
    • 2
  • Joshua Armitano
    • 2
  • David Redelberger
    • 2
  • Chantal Iobbi-Nivol
    • 2
  • Abderrahmane Boulahrouf
    • 1
  • Vincent Méjean
    • 2
    • 4
  1. 1.Laboratoire Génie Microbiologique et Applications, Faculté des Sciences de la Nature et de la VieUniversité Constantine 1ConstantineAlgeria
  2. 2.Institut de Microbiologie de la Méditerranée (IMM), Laboratoire de Chimie Bactérienne UMR7283Aix-Marseille Université, CNRSMarseilleFrance
  3. 3.Institut de Microbiologie de la Méditerranée (IMM), Plate-forme Transcriptome, FR 3479Marseille, Cedex 20France
  4. 4.Laboratoire de Chimie BactérienneInstitut de Microbiologie de la Méditerranée, Centre National de la Recherche ScientifiqueMarseille, Cedex 20France

Personalised recommendations