Environmental Science and Pollution Research

, Volume 21, Issue 8, pp 5628–5636 | Cite as

Evaluation of the reaction artifacts in an annular denuder-based sampler resulting from the heterogeneous ozonolysis of naphthalene

  • Mathieu Goriaux
  • Maryline Pflieger
  • Anne Monod
  • Sasho Gligorovski
  • Rafal S. Strekowski
  • Henri Wortham
Research Article
  • 124 Downloads

Abstract

The heterogeneous ozonolysis of naphthalene adsorbed on XAD-4 resin was studied using an annular denuder technique. The experiments involved depositing a known quantity of naphthalene on the XAD-4 resin and then measuring the quantity of the solid naphthalene that reacted away under a constant flow of gaseous ozone (0.064 to 4.9 ppm) for a defined amount of time. All experiments were performed at room temperature (26 to 30 °C) and atmospheric pressure. The kinetic rate coefficient for the ozonolysis reaction of naphthalene adsorbed on XAD-4 resin is reported to be (10.1 ± 0.4) × 10−19 cm3 molecule−1 s−1 (error is 2σ, precision only). This value is five times greater than the currently recommended literature value for the homogeneous gas phase reaction of naphthalene with ozone. The obtained rate coefficient is used to evaluate reaction artifacts from field concentration measurements of naphthalene, acenaphthene, and phenanthrene. The observed uncertainties associated with field concentration measurements of naphthalene, acenaphthene, and phenanthrene are reported to be much higher than the uncertainties associated with the artifact reactions. Consequently, ozone reaction artifact appears to be negligible compared to the observed field measurement uncertainty results.

Keywords

Polycyclic aromatic hydrocarbons Annular denuder Particulate matter Naphthalene Ozone Reaction artifact 

References

  1. Alebic-Juretic A, Cvitas T, Klasinc L (1990) Heterogeneous polycyclic aromatic hydrocarbon degradation with ozone on silica gel carrier. Environ Sci Technol 24:62–66CrossRefGoogle Scholar
  2. Atkinson R, Arey J (1994) Atmospheric chemistry of gas phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens. Environ Health Persp Suppl 4(102):117–126CrossRefGoogle Scholar
  3. Atkinson R, Aschmann SM (1986) Kinetics of the reactions of naphthalene, 2-methylnaphthalene, and 2,3-dimethylnaphthalene with OH radicals and with O3 at 295 ± 1 K. Int J Chem Kinet 18:837–846CrossRefGoogle Scholar
  4. Atkinson R, Aschmann SM (1988) Kinetics of the reaction of acenaphthene and acenaphthylene and structurally related aromatic compounds with OH and NO3 radicals, N2O5 and O3 at 296+/-2K. Int J Chem Kinet 20:999–1014Google Scholar
  5. Atkinson R, Aschmann SM, Pitts JN (1984) Kinetics of the reactions of naphthalene and biphenyl with OH radicals and with O3 at 294+/-1K. Environ Sci Technol 18:110–113CrossRefGoogle Scholar
  6. Coutant RW et al (1992) Efficiency of silicone-grease-coated denuders for collection of polynuclear aromatic hydrocarbons. Atmos Environ Part A 26:2831–2834CrossRefGoogle Scholar
  7. Finlayson-Pitts BJ, Pitts JN (1997) Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 276:1045–1051CrossRefGoogle Scholar
  8. Goriaux M (2006) Etude de artefacts de prélèvement et de la distribution gaz-particules des HAP. Dissertation. Université de Provence Aix-Marseille I.Google Scholar
  9. Goriaux M et al (2006) Field comparison of particulate PAH measurements using a low-flow denuder device and conventional sampling systems. Environ Sci Technol 40:6398–6404CrossRefGoogle Scholar
  10. Gundel LA et al (1995) Direct determination of the phase distributions of semi-volatile polycyclic aromatic hydrocarbons using annular denuders. Atmos Environ 29:1719–1733CrossRefGoogle Scholar
  11. Hunt G, Pangaro N (1982) Potential contamination from the use of synthetic adsorbents in air sampling procedures. Anal Chem 54:369–372CrossRefGoogle Scholar
  12. Jacob DJ (2000) Heterogeneous chemistry and tropospheric ozone. Atmos Environ 34:2131–2159CrossRefGoogle Scholar
  13. Liu Y et al (2006) Oxidant denuder sampling for analysis of polycyclic aromatic hydrocarbons and their oxygenated derivates in ambient aerosol: evaluation of sampling artefact. Chemosphere 62:1889–1898CrossRefGoogle Scholar
  14. Loiselle SA, Offerman FJ, Hodgson AT (1991) Development of an indoor air sampler for polycyclic aromatic compounds. Indoor Air 2:191–210CrossRefGoogle Scholar
  15. Net S, Nieto-Gligorovski L, Wortham H (2010) Heterogeneous ozonation kinetics of 4-phenoxyphenol in the presence of phtosensitizer. Atmos Chem Phys 10:1545–1554Google Scholar
  16. Perraudin E, Budzinski H, Villenave E (2005) Kinetic study of the reactions of NO2 with polycyclic aromatic hydrocarbons adsorbed on silica particles. Atmos Environ 39:6557–6567CrossRefGoogle Scholar
  17. Perraudin E, Budzinski H, Villenave E (2007a) Identification and quantification of ozonation products of anthracene and phenanthrene adsorbed on silica particles. Atmos Environ 41:6005–6017CrossRefGoogle Scholar
  18. Perraudin E, Budzinski H, Villenave E (2007b) Kinetic study of the reactions of ozone with polycyclic aromatic hydrocarbons adsorbed on atmospheric model particles. J Atmos Chem 56:57–82CrossRefGoogle Scholar
  19. Pflieger M et al (2009a) Validation of an experimental setup to study atmospheric heterogeneous ozonolysis of semi-volatile organic compounds. Atmos Chem Phys 9:2215–2225CrossRefGoogle Scholar
  20. Pflieger M, Monod A, Wortham H (2009b) Kinetic study of heterogeneous ozonolysis of alachlor, trifluralin and terbuthylazine adsorbed on silica particles under atmospheric conditions. Atmos Environ 43:5597–5603CrossRefGoogle Scholar
  21. Pitts-Jr JN et al (1981) Interactions between diesel emissions and gaseous copollutants in photochemical air pollution: Some health implications. Environ Int 5:235–242CrossRefGoogle Scholar
  22. Pöschl U (2002) Formation and decomposition of hazardous chemical components contained in atmospheric aerosol particles. J Aerosol Med 15:203CrossRefGoogle Scholar
  23. Possanzini M, Febo A, Liberti A (1983) New design of a high performance denuder for the sampling of atmospheric pollutants. Atmos Environ 17:2605–2610CrossRefGoogle Scholar
  24. Schauer C, Niessner R, Pöschl U (2003) Polycyclic aromatic hydrocarbons in urban air particulate matter: decadal and seasonal trends chemical degradation and sampling artifacts. Environ Sci Technol 37:2861–2868CrossRefGoogle Scholar
  25. Temime B et al (2002) An experimental set up of a PAH vapour generator and its use to test an annular denuder. Environ Pollut 120:609–616Google Scholar
  26. Temime-Roussel B (2002) Contribution à l’étude de la partition des HAP entre les phases gazeuse et particulaire: validation de la technique de prelevement par tube denuder annulaire. Université de Provence, DissertationGoogle Scholar
  27. Temime-Roussel B et al (2004a) Evaluation of an annular denuder tubes for atmospheric PAH partitioning studies—1: evaluation of the trapping efficiency of gaseous PAHS. Atmos Environ 38:191–-1924Google Scholar
  28. Temime-Roussel B et al (2004b) Evaluation of an annular denuder for atmospheric PAH partitioning studies—2: evaluation of mass and number particle losses. Atmos Environ 38:1925–1932CrossRefGoogle Scholar
  29. Tsapakis M, Stephanou EG (2003) Collection of gas and particle semi-volatile organic compounds: use of an oxidant denuder to minimize polycyclic aromatic hydrocarbons degradation during high-volume air sampling. Atmos Environ 37:4935–4944CrossRefGoogle Scholar
  30. WHO (2006) WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. http://www.who.int/phe/health_topics/outdoorair_aqg/en/index.html.
  31. Winiwarter W (1989) A calculation procedure for the determination of the collection efficiency in annular denuders. Atmos Environ 23:1997–2002CrossRefGoogle Scholar
  32. Zielinska B (2005) Atmospheric transformation of diesel emissions. Experimental and Toxicologic Pathology 57:31–42CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mathieu Goriaux
    • 1
  • Maryline Pflieger
    • 1
    • 2
  • Anne Monod
    • 1
  • Sasho Gligorovski
    • 1
  • Rafal S. Strekowski
    • 1
  • Henri Wortham
    • 1
  1. 1.Aix-Marseille Université, CNRS, LCE, FRE 3416MarseilleFrance
  2. 2.Laboratory for Analytical ChemistryNational Institute of ChemistryLjubljanaSlovenia

Personalised recommendations