Environmental Science and Pollution Research

, Volume 21, Issue 15, pp 8914–8931 | Cite as

Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals

  • Giorgio Cassiani
  • Andrew Binley
  • Andreas Kemna
  • Markus Wehrer
  • Adrian Flores Orozco
  • Rita Deiana
  • Jacopo Boaga
  • Matteo Rossi
  • Peter Dietrich
  • Ulrike Werban
  • Ludwig Zschornack
  • Alberto Godio
  • Arash JafarGandomi
  • Gian Piero Deidda
New approaches for low-invasive contaminated site characterization, monitoring and modelling

Abstract

The characterization of contaminated sites can benefit from the supplementation of direct investigations with a set of less invasive and more extensive measurements. A combination of geophysical methods and direct push techniques for contaminated land characterization has been proposed within the EU FP7 project ModelPROBE and the affiliated project SoilCAM. In this paper, we present results of the investigations conducted at the Trecate field site (NW Italy), which was affected in 1994 by crude oil contamination. The less invasive investigations include ground-penetrating radar (GPR), electrical resistivity tomography (ERT), and electromagnetic induction (EMI) surveys, together with direct push sampling and soil electrical conductivity (EC) logs. Many of the geophysical measurements were conducted in time-lapse mode in order to separate static and dynamic signals, the latter being linked to strong seasonal changes in water table elevations. The main challenge was to extract significant geophysical signals linked to contamination from the mix of geological and hydrological signals present at the site. The most significant aspects of this characterization are: (a) the geometrical link between the distribution of contamination and the site’s heterogeneity, with particular regard to the presence of less permeable layers, as evidenced by the extensive surface geophysical measurements; and (b) the link between contamination and specific geophysical signals, particularly evident from cross-hole measurements. The extensive work conducted at the Trecate site shows how a combination of direct (e.g., chemical) and indirect (e.g., geophysical) investigations can lead to a comprehensive and solid understanding of a contaminated site’s mechanisms.

Keywords

Hydrogeophysics GPR ERT Electrical methods Cross-hole Contamination 

References

  1. Abdel Aal GZ, Slater LD, Atekwana EA (2006) Induced-polarization measurements on unconsolidated sediments from a site of active hydrocarbon biodegradation. Geophysics 71:H13–H24CrossRefGoogle Scholar
  2. Annan AP (2005) GPR methods for hydrogeological studies. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics, Ser. 50. Springer, Dordrecht, pp 185–214CrossRefGoogle Scholar
  3. Arato A, Wehrer M, Biró B, Godio A (2013) Integration of geophysical, geochemical and microbiological data for a comprehensive small-scale characterization of an aged LNAPL-contaminated site. Environ Sci Pollut Res. doi:10.1007/s11356-013-2171-2, this issueGoogle Scholar
  4. Atekwana EA, Atekwana EA (2010) Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review. Surv Geophys 31:247–283. doi:10.1007/s10712-009-9089-8 CrossRefGoogle Scholar
  5. Atekwana EA, Sauck WA, Werkema DD (2000) Investigations of geoelectrical signatures at a hydrocarbon contaminated site. J ApplGeophys 44(2–3):167–180. doi:10.1016/S0926-9851(98)00033-0 Google Scholar
  6. Atekwana EA, Sauck WA, Abdel Aal GZ, Werkema DD (2002) Geophysical investigation of vadose zone conductivity anomalies at a hydrocarbon contaminated site: implications for the assessment of intrinsic bioremediation. J Environ Eng Geophys 7:103–110CrossRefGoogle Scholar
  7. Atekwana EA, Atekwana EA, Werkema DD, Duris JW, Rossbach S, Sauck WA, Cassidy DP, Means J, Legall FD (2004a) In situ apparent conductivity measurements and microbial population distribution at a hydrocarbon-contaminated site. Geophysics 69(1):56–63. doi:10.1190/1.1649375 CrossRefGoogle Scholar
  8. Atekwana EA, Atekwana EA, Rowe RS, Werkema DD, Legall FD (2004b) The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. J Appl Geophys 56:281–294CrossRefGoogle Scholar
  9. Atekwana EA, Atekwana E, Legall FD, Krishnamurthy RV (2004c) Field evidence for geophysical detection of subsurface zones of enhanced microbial activity. Geophys Res Lett 31, L23603Google Scholar
  10. Atekwana EA, Atekwana EA, Legall FD, Krishnamurthy RV (2005) Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer. J Contam Hydrol 80:149–167CrossRefGoogle Scholar
  11. Baedecker MJ, Cozzarelli IM, Eganhouse RP, Siegel DI, Bennett PC (1993) Crude-oil in a shallow sand gravel aquifer 3. Biogeochemical reactions and mass-balance modeling in anoxic groundwater. Appl Geochem 8(6):569–586. doi:10.1016/0883-2927(93)90014-8 CrossRefGoogle Scholar
  12. Bekins BA, Cozzarelli IM, Godsy EM, Warren E, Essaid HI, Tuccillo ME (2001) Progression of natural attenuation processes at a crude oil spill site: II. Controls on a spatial distribution of microbial populations. J Contam Hydrol 53(3–4):387–406. doi:10.1016/S0169-7722(01)00175-9 CrossRefGoogle Scholar
  13. Bennett PC, Siegel DE, Baedecker MJ, Hult MF (1993) Crude oil in a shallow sand and gravel aquifer: 1. Hydrogeology and inorganic geochemistry. Appl Geochem 8(6):529–549. doi:10.1016/0883-2927(93)90012-6 CrossRefGoogle Scholar
  14. Benson AK, Payne KL, Stubben MA (1997) Mapping groundwater contamination using dc resistivity and VLF geophysical methods—a case study. Geophysics 62:80–86CrossRefGoogle Scholar
  15. Bermejo JL, Sauck WA, Atekwana EA (1997) Geophysical discovery of a new LNAPL plume at the former Wurtsmith AFB, Oscoda, Michigan. Ground Water Monit Remediat 17:131–137CrossRefGoogle Scholar
  16. Binley AM, Kemna A (2005) DC resistivity and induced polarization methods. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Water Sci. Technol. Library, Ser. 50. Springer, New York, pp 129–156Google Scholar
  17. Binley, A., Ramirez, A., Daily, W. (1995) Regularised image reconstruction of noisy electrical resistance tomography data. In: Beck MS, Hoyle BS, Morris MA, Waterfall RC, Williams RA (eds), Process tomography — 1995. Proceedings of the 4th Workshop of the European Concerted Action on Process Tomography, Bergen, 6–8 April 1995, pp. 401– 410.Google Scholar
  18. Binley AM, Cassiani G, Deiana R (2011) Hydrogeophysics—opportunities and challenges. B GEOFIS TEOR APPL 51(4):267–284Google Scholar
  19. Bradford JH (2007) Frequency-dependent attenuation analysis of ground-penetrating radar data. Geophysics 72:J7–J16. doi:10.1190/1.2710183 CrossRefGoogle Scholar
  20. Brandt CA, Becker JM, Porta A (2002) Distribution of polycyclic aromatic hydrocarbons in soils and terrestrial biota after a spill of crude oil in Trecate, Italy. Environ Toxicol Chem 21:1638–1643CrossRefGoogle Scholar
  21. Brovelli A, Malaguerra F, Barry DA (2009) Bioclogging in porous media: model development and sensitivity to initial conditions. Environ Model Softw 24:611–626CrossRefGoogle Scholar
  22. Burbery L, Cassiani G, Andreotti G, Ricchiuto T, Semple KT (2004) Well test and stable isotope analysis for the determination of sulphate-reducing activity in a fast aquifer contaminated by hydrocarbons. Environ Pollut 129(2):321–330CrossRefGoogle Scholar
  23. Cassiani G, Strobbia C, Gallotti L (2004) Vertical radar profiles for the characterization of deep vadose zones. Vadose Zone J 3:1093–1115CrossRefGoogle Scholar
  24. Cassiani G, Bruno V, Villa A, Fusi N, Binley AM (2006) A saline tracer test monitored via time-lapse surface electrical resistivity tomography. J Appl Geophys 59:244–259. doi:10.1016/j.jappgeo2005.10.007 CrossRefGoogle Scholar
  25. Cassidy NJ (2007) Evaluating LNAPL contamination using GPR signal attenuation analysis and dielectric property measurements: practical implications for hydrological studies. J Contam Hydrol 94:49–75CrossRefGoogle Scholar
  26. Che-Alota V, Atekwana EA, Atekwana EA, Sauck WA, Werkema DD (2009) Temporal geophysical signatures due to contaminant mass reduction. Geophysics 74(4):B113–B123. doi:10.1190/1.3139769 CrossRefGoogle Scholar
  27. Chen J, Hubbard SS, Williams KH, Flores Orozco A, Kemna A (2012) Estimating the spatiotemporal distribution of geochemical parameters associated with biostimulation using spectral induced polarization data and hierarchical Bayesian models. Water Resour Res 48, W05555. doi:10.1029/2011WR010992 Google Scholar
  28. Christensen TH, Bierg PL, Banwart SA, Jakobsen R, Heron G, Albrechtsen HJ (2000) Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45(3–4):165–241CrossRefGoogle Scholar
  29. Christensen O, Cassiani G, Diggle PJ, Ribeiro P, Andreotti G (2004) Statistical estimation of the relative efficiency of natural attenuation mechanisms in contaminated aquifers. Stoch Env Res Risk A 18:339–350CrossRefGoogle Scholar
  30. Daily W, Ramirez A, LaBrecque D, Nitao J (1992) Electrical resistivity tomography of vadose water movement. Water Resour Res 28(5):1429–1442CrossRefGoogle Scholar
  31. Daily W, Ramirez A, LaBrecque D, Barber W (1995) Electrical-resistance tomography at the Oregon-Graduate-Institute. J Appl Geophys 33(4):227–237. doi:10.1016/0926-9851(95)00004-L CrossRefGoogle Scholar
  32. Deiana R, Cassiani G, Villa A, Bagliani A, Bruno V (2008) Model calibration of a water injection test in the vadose zone of the Po River plain using GPR cross-hole data. Vadose Zone J 7:215–226. doi:10.2136/vzj2006.0137 CrossRefGoogle Scholar
  33. Everett M, Meju M (2005) Near-surface controlled-source electromagnetic induction. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Water Sci. Technol. Library, Ser. 50. Springer, New York, pp 157–183Google Scholar
  34. Flores Orozco A, Williams KH, Long PE, Hubbard SS, Kemna A (2011) Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer. J Geophys Res 116, G03001Google Scholar
  35. Flores Orozco A, Oberdorster C, Zschornack L, Leven C, Dietrich P, Weiss H (2012) Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging. J Contam Hydrol 136:131–144. doi:10.1016/j.jconhyd.2012.06.001 CrossRefGoogle Scholar
  36. French HK, van der Zee SEATM, Meju M (2009) SoilCAM: soil contamination: advanced integrated characterisation and time-lapse monitoring. Rev Environ Sci Biotechnol 8:125–130. doi:10.1007/s11157-009-9158-y CrossRefGoogle Scholar
  37. Gasperikova E, Hubbard SS, Watson DB, Baker GS, Peterson JE, Kowalsky MB, Smith M, Brooks S (2012) Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior. J Contam Hydrol 142:33–49. doi:10.1016/j.jconhyd.2012.09.007 CrossRefGoogle Scholar
  38. Kästner M, Cassiani G (2009) ModelPROBE: model driven soil probing, site assessment and evaluation. Rev Environ Sci Biotechnol 8:131–136. doi:10.1007/s11157-009-9157-z CrossRefGoogle Scholar
  39. Kemna A, Vanderborght J, Kulessa B, Vereecken H (2002) Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J Hydrol 267:125–146CrossRefGoogle Scholar
  40. LaBrecque DJ, Ramirez AL, Daily WD, Binley AM, Schima SA (1996) ERT monitoring of environmental remediation processes. Meas Sci Technol 7(3):375–383CrossRefGoogle Scholar
  41. Lee JY, Cheon JY, Lee KK, Lee SY, Lee MH (2001) Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer. J Contam Hydrol 50:139–158CrossRefGoogle Scholar
  42. Lopes de Castro D, Branco RMGC (2003) 4-D ground penetrating radar monitoring of a hydrocarbon leakage site in Fortaleza (Brazil) during its remediation process: a case history. J Appl Geophys 54:127–144CrossRefGoogle Scholar
  43. Lyngkilde J, Christensen TH (1992) Redox zones of a landfill leachate pollution plume (Vejen, Denmark). J Contam Hydrol 10(4):273–289CrossRefGoogle Scholar
  44. Mage R, Porta A (2001) Long-term biodegradation of underground and aquifer contamination at Trecate. In: Leeson A, Johnson PC, Hinchee RE, Semprini L, Magar VS (eds) In situ aeration and aerobic remediation book series: bioremediation series, vol 6, issue 10. 6th International In Situ and On-Site Bioremediation Symposium, San Diego, CA, 2001 June 4–7, pp 109–114.Google Scholar
  45. Monego M, Cassiani G, Deiana R, Putti M, Passadore G, Altissimo L (2010) Tracer test in a shallow heterogeneous aquifer monitored via time-lapse surface ERT. Geophysics 75(4):WA61–WA73. doi:10.1190/1.3474601 CrossRefGoogle Scholar
  46. Osella A, de la Vega M, Lascano E (2002) Characterization of a contaminant plume due to a hydrocarbon spill using geoelectrical methods. J Environ Eng Geophys 7:78–87CrossRefGoogle Scholar
  47. Perri MT, Cassiani G, Gervasio I, Deiana R, Binley AM (2012) A saline tracer test monitored via both surface and cross-borehole electrical resistivity tomography: comparison of time-lapse results. J Appl Geophys 79:6–16. doi:10.1016/j.jappgeo.2011.12.011 CrossRefGoogle Scholar
  48. Petts J. Cairney T, Smith M (1997) Risk-based contaminated land investigation and assessment. Wiley, ISBN: 978-0-471-96608-1, 352 ppGoogle Scholar
  49. Pumphrey KM, Chrysikopoulos CV (2004) Non-aqueous phase liquid drop formation within a water saturated fracture. Colloids Surf A Physicochem Eng Asp 240(1–3):199–209CrossRefGoogle Scholar
  50. Revil A, Titov K, Doussan C, Lapenna V (2006) Applications of the self-potential method to hydrological problems. In: Vereecken H, Binley A, Cassiani G, Kharkhordin I, Revil A, Titov K (eds) Applied hydrogeophysics. Springer-Verlag, Berlin, pp 255–292CrossRefGoogle Scholar
  51. Rossi M, Cassiani G, Binley AM (2012) A stochastic analysis of cross-hole GPR zero-offset profiles for subsurface characterization. Vadose Zone J 11(4):CP9–+. doi:10.2136/vzj2011.0078 Google Scholar
  52. Sauck WA, Atekwana EA, Nash MS (1998) High conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. J Environ Eng Geophys 2:203–212Google Scholar
  53. Schütze C, Vienken T, Werban U, Dietrich P, Finizola A, Leven C (2012) Joint application of geophysical methods and direct push soil gas surveys for the improved delineation of buried fault zones. J Appl Geophys 82(2012):129–136. doi:10.1016/j.jappgeo.2012.03.002 CrossRefGoogle Scholar
  54. Sogade JA, Scira-Scappuzzo F, Vichabian Y, Shi WQ, Rodi W, Lesmes DP, Morgan FD (2006) Induced-polarization detection and mapping of contaminant plumes. Geophysics 71(3):B75–B84. doi:10.1190/1.2196873 CrossRefGoogle Scholar
  55. Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New YorkGoogle Scholar
  56. Tezkan B, Georgescu P, Fauzi U (2005) A radiomagnetotelluric survey on an oil-contaminated area near the Brazi Refinery, Romania. Geophys Prospect 53:311–323CrossRefGoogle Scholar
  57. Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16:574–582CrossRefGoogle Scholar
  58. Werkema DD, Atekwana EA, Endres AL, Sauck WA, Cassidy DP (2003) Investigating the geoelectrical response of hydrocarbon contamination undergoing biodegradation. Geophys Res Lett 30:1647. doi:10.1029/2003GL017346 CrossRefGoogle Scholar
  59. Willumsen PA, Karlson U (1997) Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7(5):415–423CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Giorgio Cassiani
    • 1
  • Andrew Binley
    • 2
  • Andreas Kemna
    • 3
  • Markus Wehrer
    • 4
  • Adrian Flores Orozco
    • 3
    • 5
  • Rita Deiana
    • 6
  • Jacopo Boaga
    • 1
  • Matteo Rossi
    • 1
  • Peter Dietrich
    • 7
  • Ulrike Werban
    • 7
  • Ludwig Zschornack
    • 7
  • Alberto Godio
    • 8
  • Arash JafarGandomi
    • 2
  • Gian Piero Deidda
    • 9
  1. 1.Dipartimento di GeoscienzeUniversità di PadovaPadovaItaly
  2. 2.Lancaster Environment CentreLancaster UniversityLancasterUK
  3. 3.Department of Geodynamics and GeophysicsUniversity of BonnBonnGermany
  4. 4.Institut für GeowissenschaftenFriedrich-Schiller-UniversitätJenaGermany
  5. 5.Department of Geodesy and GeoinformationTechnical University of WienViennaAustria
  6. 6.Dipartimento dei Beni Culturali: Archeologia, Storia dell’Arte, del Cinema e della MusicaUniversità di PadovaPadovaItaly
  7. 7.UFZ-Helmholtz Centre for Environmental ResearchLeipzigGermany
  8. 8.Dipartimento di Ingegneria dell’Ambiente, del Territorio e delle InfrastrutturePolitecnico di TorinoTorinoItaly
  9. 9.Dipartimento di Ingegneria Civile, Ambientale e ArchitetturaUniversità di CagliariCagliariItaly

Personalised recommendations