Environmental Science and Pollution Research

, Volume 21, Issue 20, pp 11649–11660 | Cite as

On the origin of water-soluble organic tracer compounds in fine aerosols in two cities: the case of Los Angeles and Barcelona

  • M. Alier
  • M. Dall Osto
  • Y.-H. Lin
  • J. D. Surratt
  • R. Tauler
  • J. O. Grimalt
  • B. L. van Drooge
14th EuCheMS International Conference on Chemistry and the Environment (ICCE 2013, Barcelona, June 25 - 28, 2013)

Abstract

Water-soluble organic compounds (WSOCs), represented by anhydro-saccharides, dicarboxylic acids, and polyols, were analyzed by gas chromatography interfaced to mass spectrometry in extracts from 103 PM1 and 22 PM2.5 filter samples collected in an urban background and road site in Barcelona (Spain) and an urban background site in Los Angeles (USA), respectively, during 1-month intensive sampling campaigns in 2010. Both locations have similar Mediterranean climates, with relatively high solar radiation and frequent anti-cyclonic conditions, and are influenced by a complex mixture of emission sources. Multivariate curve resolution-alternating least squares analyses were applied on the database in order to resolve differences and similarities in WSOC compositions in the studied sites. Five consistent clusters for the analyzed compounds were obtained, representing primary regional biomass burning organic carbon, three secondary organic components (aged SOC, isoprene SOC, and α-pinene SOC), and a less clear component, called urban oxygenated organic carbon. This last component is probably influenced by in situ urban activities, such as food cooking and traffic emissions and oxidation processes.

Keywords

PM WSOC Secondary organic aerosol Dicarboxylic acids Anhydro-saccharides 

Notes

Acknowledgments

The authors thank Xavier Querol, Manuel Dall’Osto, Joost de Gouw, Jochem Stutz, Jason Surratt, John Seinfeld, and Jose Luis Jimenez, the organizers of the SAPUSS and CalNex-LA campaigns, for their service to the community. Technical assistance from R. Chaler and D. Fanjul is acknowledged. Financial support for this study was provided by projects: CTQ2009-11572, SAPUSS (FP7-PEOPLE-2009-IEF, Project number 254773) and AEROTRANS (CTQ2009-377 14777-C02-01).

References

  1. Alier M, van Drooge BL, Dall’Osto M, Querol X, Grimalt JO, Tauler R (2013) Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona (Spain) during SAPUSS. Atmos Chem Phys 13:10353–10371CrossRefGoogle Scholar
  2. Bahreini R, Middlebrook AM, de Gouw JA, Warneke C, Trainer M, Brock CA, Stark H, Brown SS, Dube WP, Gilman JB, Hall K, Holloway JS, Kuster WC, Perring AE, Prevot ASH, Schwartz JP, Spackman JR, Szidat S, Wagner NL, Weber RJ, Zotter P, Parrish DD (2012) Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. Geophys Res Lett 39, L06805CrossRefGoogle Scholar
  3. Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303:1173–1176CrossRefGoogle Scholar
  4. Claeys M, Szmigielski R, Kourtchev, Van der Veken P, Vermeylen R, Maenhaut W, Jaoui M, Kleindienst TE, Lewandowski M, Offenberg JH, Edney EO (2007) Hydroxydicarboxylic acids: markers for secondary organic aerosol from the photooxidation of α-pinene. Environ Sci Technol 41:1628–1634CrossRefGoogle Scholar
  5. Dall’Osto M, Querol X, Alastuey A, Minguillon MC, Alier M, Amato F, Brines M, Cusak M, Grimalt JO, Karanasiou A, Moreno T, Pandolfi M, Pey J, Reche C, Ripoll A, Tauler R, Van Drooge BL, Viana M, Harrison RM, Gietl J, Beddows D, Bloss W, O’Dowd C, Ceburnis D, Martucci G, Ng S, Worsnop D, Wenger J, Mc Gillcuddy E, Sudou J, Healy R, Lucarelli F, Nava S, Jimenez JL, Gomez Moreno F, Artinano B, Prevot AS, Pfaffenberger L, Frey S, Wilsenack F, Casabona D, Jimenez-Guerrero P, Gross D, Cotz N (2013) Presenting SAPUSS: Solving aerosol problem by using synergistic strategies at Barcelona, Spain. Atmos Chem Phys 13:8991–9019CrossRefGoogle Scholar
  6. El Haddad I, Marchand N, Temime-Roussel B, Wortham H, Piot C, Besombes JL, Baduel C, Voisin D, Armengaud A, Jaffrezo JL (2011) Insights into the secondary fraction of the organic aerosol in a Mediterranean urban area: Marseille. Atmos Chem Phys 11:2059–2079CrossRefGoogle Scholar
  7. Fine PM, Cass GR, Simoneit BRT (2004) Chemical characterization of fine particle emissions from the wood stove combustion of prevalent United States tree species. Environ Eng Sci 21:705–21CrossRefGoogle Scholar
  8. Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue NM, George C, Goldstein AH, Hamilton JF, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin ME, Jimenez JL, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel TF, Monod A, Prévôt ASH, Seinfeld JH, Surratt JD, Szmigielski R, Wildt J (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236CrossRefGoogle Scholar
  9. Hayes PL, Ortega AM, Cubison MJ, Froyd KD, Zhao Y, Cliff SS, Hu WW, Toohey DW, Flynn JH, Lefer BL, Grossberg N, Alvarez S, Rappenglück B, Taylor JW, Allan JD, Holloway JS, Gilman JB, Kuster WC, de Gouw JA, Massoli P, Zhang X, Liu J, Weber RJ, Corrigan AL, Russell LM, Isaacman G, Worton DR, Kreisberg NM, Goldstein AH, Thalman R, Waxman EM, Volkamer R, Lin YH, Surratt JD, Kleindienst TE, Offenberg JH, Dusanter S, Griffith S, Stevens PS, Brioude J, Angevine WM, Jimenez JL (2013) Organic aerosol composition and sources in Pasadena, California during the 2010 CalNex Campaign. J Geophys Res Atmos 118:1–25CrossRefGoogle Scholar
  10. Heald CL, Kroll JH, Jimenez JL, Docherty KS, DeCarlo PF, Aiken AC, Chen Q, Martin ST, Farmer DK, Artaxo P, Weinheimer AJ (2010) A simplified description of organic aerosol composition and implications for atmospheric aging. Geophys Res Lett 37, L08803Google Scholar
  11. Hennigan CJ, Miracolo MA, Engelhart GJ, May AA, Presto AA, Lee T, Sullivan AP, McMeeking GR, Coe H, Wold CE, Hao WM, Gilman JB, Kuster WC, de Gouw J, Schichtel BA, JrJL C, Kreidenweis SM, Robinson AL (2011) Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber. Atmos Chem Phys 11:7669–7686CrossRefGoogle Scholar
  12. Hersey SP, Craven JS, Schilling KA, Metcalf AR, Sorooshian A, Chan MN, Flagan RC, Seinfeld JH (2011) The Pasadena aerosol characterization observatory (PACO): chemical and physical analysis of the western Los Angeles Basin aerosol. Atmos Chem Phys 11:7417–7443CrossRefGoogle Scholar
  13. Hoffmann D, Tilgner A, Iinuma Y, Herrmann H (2010) Atmospheric stability of levoglucosan: a detailed laboratory and modeling study. Environ Sci Technol 44:694–699CrossRefGoogle Scholar
  14. Ion AC, Vermeylen R, Kourtchev I, Cafmeyer J, Chi X, Gelencsér A et al (2005) Polar organic compounds in rural PM2.5 aerosols from K-puszta, Hungary, during a 2003 summer field campaign: sources and diel variations. Atmos Chem Phys 5:1805–14CrossRefGoogle Scholar
  15. Jaumot J, Gargallo R, de Juan A, Tauler R (2005) A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLaboratory. Chemom Intell Lab Syst 76:101–110CrossRefGoogle Scholar
  16. Jimenez JL, Canagaratna MR, Donahue NM et al (2009) Evolution of organic aerosols in the atmosphere. Science 326:1525–1529CrossRefGoogle Scholar
  17. Kautzman KE, Surratt JD, Chan MN, Chan AWH, Hersey SP, Chabra PS, Dalleska NF, Wennberg PO, Flagan RC, Seinfeld JH (2010) Chemical composition of gas- and particle-phase products from photooxidation of naphthalene. J Phys Chem 114:913–934CrossRefGoogle Scholar
  18. Kleindienst TE, Jaoui M, Lewandowski M, Offenberg JH, Docherty KS (2012) The formation of SOA and chemical tracer compounds from the photooxidation of naphthalene and its methyl analogs in the presence and absence of nitrogen oxides. Atmos Chem Phys 12:8711–8726CrossRefGoogle Scholar
  19. Kourtchev I, Warnke J, Maenhaut W, Hoffmann T, Claeys M (2008) Polar organic marker compounds in PM2.5 aerosol from a mixed forest site in western Germany. Chemosphere 73:1309–14CrossRefGoogle Scholar
  20. Kourtchev I, Copolovici L, Claeys M, Maenhout W (2009) Characterization of aerosols at the forested site in central Europe. Environ Sci Technol 43:4665–4671CrossRefGoogle Scholar
  21. Laaksonen A, Kulmala M, O’Dowd CD, Joutsensaari J, Vaattovaara P, Mikkonen S, Lehtinen KEJ, Sogacheva L, Dal Maso M, Aalto P, Petäjä T, Sogachev A, Yoon YJ, Lihavainen H, Nilsson D, Facchini MC, Cavalli F, Fuzzi S, Hoffmann T, Arnold F, Hanke M, Sellegri K, Umann B, Junkermann W, Coe H, Allan JD, Alfarra MR, Worsnop DR, Riekkola ML, Hyötyläinen T, Viisanen Y (2008) The role of VOC oxidation products in continental new particle formation. Atmos Chem Phys 8:2657–2665CrossRefGoogle Scholar
  22. Lewandowski M, Piletic IR, Kleindienst TE, Offenberg JH, Beaver MR, Jaoui M, Docherty KS, Edney EO (2013) Secondary organic aerosol characterisation at field sites across the United States during the spring–summer period. Int J Environ Anal Chem. doi: 10.1080/03067319.2013.803545 Google Scholar
  23. Lin YH, Knipping EM, Edgerton ES, Shaw SL, Surratt JD (2013a) Investigating the influences of SO2 and NH3 levels on isoprene-derived secondary organic aerosol formation using conditional sampling approaches. Atmos Chem Phys Discuss 13:3095–3134CrossRefGoogle Scholar
  24. Lin YH, Zhang H, Pye HOT, Zhang Z, Marth WJ, Park S, Arashiro M, Cui T, Budisulistiorini SH, Sexton KG, Vizuete W, Xie Y, Luecken DJ, Piletic IR, Edney EO, Bartolotti LJ, Gold A, Surratt JD (2013b) Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides. Proc Natl Acad Sci U S A 110:6718–6723CrossRefGoogle Scholar
  25. Minguillón MC, Perron N, Querol X, Szidat S, Fahrni SM, Alastuey A, Jimenez JL, Mohr C, Ortega AM, Day DA, Lanz VA, Wacker L, Reche C, Cusack M, Amato F, Kiss G, Hoffer A, Decesari S, Moretti F, Hillamo R, Teinil K, Seco R, Peñuelas J, Metzger A, Schallhart S, Muller M, Hansel A, Burkhart JF, Baltensperger U, Prevot ASH (2011) Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain. Atmos Chem Phys 11:12067–12084CrossRefGoogle Scholar
  26. Mohr M, DeCarlo PF, Heringa MF, Chirico R, Slowik JG, Richter R, Reche C, Alastuey A, Querol X, Seco R, Peñuelas J, Jimenez JL, Crippa M, Zimmermann R, Baltensperger U, Prevot ASH (2012) Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmos Chem Phys 12:1649–1665CrossRefGoogle Scholar
  27. Moise T, Rudich Y (2002) Reactive uptake of ozone by aerosol-associated unsaturated fatty acids: kinetics, mechanism, and products. J Phys Chem A 106(27):6469–6476CrossRefGoogle Scholar
  28. O’Dowd CD, Aalto P, Hämeri K, Kulmala M, Hoffmann T (2002) Atmospheric particles from organic vapours. Nature 416:497CrossRefGoogle Scholar
  29. Paulot F, Wunch D, Crounse JD, Toon GC, Millet DB, DeCarlo PF, Vigouroux C, Deutscher NM, González Abad G, Notholt J, Warneke T, Hannigan JW, Arneke C, de Gouw JA, Dunlea EJ, De Mazière M, Griffith DWT, Bernath P, Jimenez JL, Wennberg PO (2011) Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmos Chem Phys 11:1989–2013CrossRefGoogle Scholar
  30. Pollack IB, Ryerson TB, Trainer M et al (2012) Airborne and ground-based observations of a weekend effect in ozone, precursors, and oxidation products in the California South Coast Air Basin. J Geophys Res 17, D00V05. doi: 10.1029/2011JD016772
  31. Puxbaum H, Caseiro A, Sánchez-Ochoa A, Kasper-Giebl A, Claeys M, Gelencsér A, Legrand M, Preunkert S, Pio C (2007) Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J Geophys Res 112:D23S05Google Scholar
  32. Reche C, Moreno T, Amato F, Viana M, van Drooge BL, Chuang H, Bérubé K, Jones T, Alastuey A, Querol X (2012) A multidisciplinary approach to characterise exposure risk and toxicological effects of PM10 and PM2.5 samples in urban environments. Ecotoxicol Environ Safe 78:327–335CrossRefGoogle Scholar
  33. Ryerson TB, Andrews AE, Angevine WM, Bates TS, Brock CA, Cairns B, Cohen RC, Cooper OR, de Gouw JA, Fehsenfeld FC, Ferrare RA, Fischer ML, Flagan RC, Goldstein AH, Hair JW, Hardesty RM, Hostetler CA, Jimenez JL, Langford AO, McCauley E, McKeen SA, Molina LT, Nenes A, Oltmans SJ, Parrish DD, Pederson JR, Pierce PK, Quinn PK, Seinfeld JH, Senff CJ, Sorooshian A, Stutz J, Surratt JD, Trainer M, Volkamer R, Williams EJ, Wofsy SC (2013) The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Am Geophys Union. doi: 10.1002/jgrd.50331 Google Scholar
  34. Schauer JJ, Kleemann MJ, Cass GR, Simoneit BRT (2002) Measurements of emissions from air pollution sources, 5. C1–C32 organic compounds from gasoline-powered motor vehicles. Environ Sci Technol 36:1169–1180CrossRefGoogle Scholar
  35. Simoneit BRT (2002) Biomass burning—a review of organic tracers for smoke from incomplete combustion. Appl Geochem 17:129–162CrossRefGoogle Scholar
  36. Schmidt C, Marr IL, Caseiro A, Kotianová P, Berner A, Bauer H, Kasper-Geibl PH (2008) Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmos Environ 42:126–141CrossRefGoogle Scholar
  37. Stone EA, Zhou J, Snyder DC, Rutter AP, Mieritz M, Schauer JJ (2009) A comparison of summertime secondary organic aerosol source contributions at contrasting urban locations. Environ Sci Technol 43:3448–3454CrossRefGoogle Scholar
  38. Surratt JD, Chan AWH, Eddingsaas NC, Chan MN, Loza CL, Kwan AJ, Hersey SP, Flagan RC, Wennberg PO, Seinfeld JH (2010) Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc Natl Acad Sci U S A 107:6640–6645CrossRefGoogle Scholar
  39. Szmigielski R, Surratt JD, Gómez-González Y, Van der Veken P, Kourtchev I, Vermeylen R et al (2007) 3-methyl-1,2,3-butanetricarboxylic acid: an atmospheric tracer for terpene secondary organic aerosol. Geophys Res Lett 34, L24811. doi: 10.1029/2007GL03133 CrossRefGoogle Scholar
  40. Tauler R, Smilde A, Kowalski B (1995) Selectivity, local rank, 3-way data-analysis and ambiguity in multivariate curve resolution. J Chemom 9:31–58CrossRefGoogle Scholar
  41. Tauler R, Viana M, Querol X, Alastuey A, Flight RM, Wentzell PD, Hopke PK (2009) Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. Atmos Environ 43:3989CrossRefGoogle Scholar
  42. Thompson JE, Hayes PL, Jimenez JL, Adachi K, Zhang X, Lui J, Weber RJ, Buseck PR (2012) Aerosol optical properties at Pasadena, CA during CalNex 2010. Atmos Environ 55:190–200CrossRefGoogle Scholar
  43. van Drooge BL, Cusack M, Reche C, Mohr C, Alastuey A, Querol X, Prevot A, Day DA, Jimenez JL, Grimalt JO (2012) Molecular marker characterization of the organic composition of submicron aerosols from Mediterranean urban and rural environments under contrasting meteorological conditions. Atmos Environ 61:482–489CrossRefGoogle Scholar
  44. Warneke C, de Gouw JA, Holloway JS, Peischl J, Ryerson TB, Atlas E, Blake D, Trainer M, Parrish DD (2012) Multiyear trends in volatile organic compounds in Los Angeles, California: five decades of decreasing emissions. J Geophys Res 117, doi: 10.1029/2012JD017899
  45. Yang L, Ray MB, Yu LE (2008) Photooxidation of dicarboxylic acids—part II: kinetics, intermediates and field observations. Atmos Environ 42:868–880CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Alier
    • 1
  • M. Dall Osto
    • 2
  • Y.-H. Lin
    • 3
  • J. D. Surratt
    • 3
  • R. Tauler
    • 1
  • J. O. Grimalt
    • 1
  • B. L. van Drooge
    • 1
  1. 1.Department of Environmental ChemistryInstitute for Environmental Assessment and Water (IDAEA-CSIC)BarcelonaSpain
  2. 2.Institut de Ciències del Mar (ICM-CSIC)BarcelonaSpain
  3. 3.Department of Environmental Sciences and Engineering, Gillings School of Global Public HealthUniversity of North CarolinaChapel HillUSA

Personalised recommendations