Environmental Science and Pollution Research

, Volume 21, Issue 8, pp 5347–5356 | Cite as

Computational fluid dynamics modelling of flow and particulate contaminants sedimentation in an urban stormwater detention and settling basin

  • Hexiang Yan
  • Gislain Lipeme Kouyi
  • Carolina Gonzalez-Merchan
  • Céline Becouze-Lareure
  • Christel Sebastian
  • Sylvie Barraud
  • Jean-Luc Bertrand-Krajewski
Chemical, microbiological, spatial characteristics and impacts of contaminants from urban catchments: CABRRES project


Sedimentation is a common but complex phenomenon in the urban drainage system. The settling mechanisms involved in detention basins are still not well understood. The lack of knowledge on sediment transport and settling processes in actual detention basins is still an obstacle to the optimization of the design and the management of the stormwater detention basins. In order to well understand the sedimentation processes, in this paper, a new boundary condition as an attempt to represent the sedimentation processes based on particle tracking approach is presented. The proposed boundary condition is based on the assumption that the flow turbulent kinetic energy near the bottom plays an important role on the sedimentation processes. The simulated results show that the proposed boundary condition appears as a potential capability to identify the preferential sediment zones and to predict the trapping efficiency of the basin during storm events.


Sedimentation Particle tracking Boundary condition Turbulent kinetic energy Resuspension Settling velocity Particulate contaminants CFD modelling 



We would like to acknowledge the OTHU (Observatoire de Terrain en Hydrologie Urbaine), Labex IMU and ANR CESA CABRRES programme for the scientific support and financing, and the Chinese Scholarship Council for funding through the Doctoral Scholarship project CSC/UT-INSA.


  1. Adamsson Ǻ, Stovin VR, Bergdahl L (2003) Bed shear stress boundary condition for storage tank sedimentation. J Environ Eng 129(7):651–657CrossRefGoogle Scholar
  2. Aiguier E, Chebbo G, Bertrand-Krajewski J-L, Hedges P, Tyack JN (1996) Methods for determining the settling velocity profiles of solids in storm sewage. Water Sci Technol 33(9):117–125CrossRefGoogle Scholar
  3. Ansys (2010) Ansys fluent theory guide. Release 13, Ansys Inc., Canonsburg, USA.Google Scholar
  4. Ashley RM, Bertrand-Krajewski J-L, Hvitved-Jacobsen T, Verbanck M (2004) Solids in sewers: characteristics effects and control of sewer solids and associated pollutants. IWA Publishing, LondonGoogle Scholar
  5. Bakhtyar R, Yeganeh-bakhtiary A, Barry DA, Ghaheri A (2009) Euler-Euler coupled two–phase flow modeling of sheet flow sediment motion in the nearshore. J Coast Res Spec Issue 56:467–471Google Scholar
  6. Bardin JP, Barraud S (2004) Diagnostic and restructuration aid of the retention basin in Chassieu. Report for the management of the Greater Lyon. INSA Lyon. Villeurbanne, FranceGoogle Scholar
  7. Benoist A, Lijklema L (1990) Distribution of sedimentation rates of suspended solids and heavy metals in combined sewer overflows. Water Sci Technol 22(10/11):61–68Google Scholar
  8. Bentzen TR (2010) 3D numerical modelling of transport, deposition and resuspension of highway deposited sediments in wet detention ponds. Water Sci Technol 62(3):736–742Google Scholar
  9. Bertrand-Krajewski J-L (2001) Determination of settling velocities of the particulate pollutants of urban wastewater by adjusting the numerical curve M (t) for the protocol VICTOR. Research Report, INSA Lyon, Villeurbanne, FranceGoogle Scholar
  10. Bertrand-Krajewski J-L (2004) TSS concentration in sewers estimated from turbidity measurements by means of linear regression accounting for uncertainties in both variables. Water Sci Technol 50(11):81–88Google Scholar
  11. Bertrand-Krajewski J-L, Barraud S, Lipeme-Kouyi G, Torres A, Lepot M (2007) Event and annual TSS and COD loads in combined sewer overflows estimated by continuous in situ turbidity measurements. 11th international conference on diffuse pollution, Belo Horizonte, Brazil, 26–31 August 2007Google Scholar
  12. Brown JS, Stein ED, Ackerman D, Dorsey JH, Lyon J, Carter PM (2013) Metals and bacteria partitioning to various size particles in Ballona creek storm water runoff. Environ Toxicol Chem 32(2):320–328CrossRefGoogle Scholar
  13. Chancelier FP, Chebbo G, Lucas-Aiguier E (1998) Estimation of settling velocities. Water Res 32(11):3461–3471CrossRefGoogle Scholar
  14. Chebbo G (1992) Solids in urban wet weather discharges: characterization and treatment. Thesis, ENPCGoogle Scholar
  15. Chebbo G, Gromaire-Mertz MC, Lucas E (2003) VICAS Protocol: measure of the settling velocity of TSS in effluents. TSM. 12: 39–49. (Protocole VICAS : mesure de la vitesse de chute des MES dans les effluents urbains. TSM. 12, 39–49)Google Scholar
  16. Dufresne M, Vazquez J, Terfous A (2009) Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank. Comput Fluids 38:1042–1049CrossRefGoogle Scholar
  17. EPA (1999) Development of bench-scale settling apparatus: settling velocity data for design and operation of wet-weather flow solids-liquid separation processes. United States Environmental Protection Agency, Office of Research and Development, Washington DC 20460, EPA/600/X-99/031, 42 p.Google Scholar
  18. Gonzalez-Merchan C (2011) Improved knowledge of the clogging in the infiltration systems of stormwater. Ph.D thesis, INSA Lyon, Villeurbanne, FranceGoogle Scholar
  19. Gromaire-Mertz MC (2004). Urban wet weather pollution in combined sewer networks: Characteristics and origins. Thesis, ENPCGoogle Scholar
  20. Gromaire-Mertz MC, Chebbo G (2003) Measuring the fall velocity of suspended particles in effluents. VICAS protocol user's manual. CEREVE ENPC, Marne-la-ValleeGoogle Scholar
  21. Gromaire-Mertz MC, Garnaud S, Gonzalez A, Chebbo G (1999) Characterization of urban runoff pollution in Paris. Water Sci Technol 39(2):1–8CrossRefGoogle Scholar
  22. Hribersek M, Zajdela B, Hribernik A, Zadravec M (2011) Experimental and numerical investigations of sedimentation of porous wastewater sludge flocs. Water Res 45:1729–1735CrossRefGoogle Scholar
  23. Iimura K, Nakagawa H, Higashitani K (1998) Deformation of aggregates depositing on a plate in a viscous fluid simulated by a modified discrete element method. Adv Powder Technol 9(4):345–361CrossRefGoogle Scholar
  24. Karunaratne SHP (1992) The influence of Gullly pot performance on the entry of sediment into sewers. Ph.D. South Bank University. London, UKGoogle Scholar
  25. Krishnappan BG, Marsalek J (2002) Modelling of flocculation and transport of cohesive seiment from an on-stream stormwater setention pond. Water Res 36:3849–3859CrossRefGoogle Scholar
  26. Lee B, Shimizu Y, Matsuda T, Matsui S (2005) Characterization of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in deposited road particles (DRPs) from Lake Biwa area, Japan. Environ Sci Technol 39:7402–7409CrossRefGoogle Scholar
  27. Lipeme Kouyi G, Torres A, Bertrand-Krajewski JL (2008) CFD modelling of the spatial distribution of sediment in a large detention basin. Proceedings of the international conference on measurements and hydraulics of sewers, 19–21 August 2008, University of Queensland, Brisbane, AustraliaGoogle Scholar
  28. Lipeme Kouyi G, Arias L, Barraud S, Bertrand-Krajewski JL (2010) CFD modelling of flows in a large stromwater detention and settling basin. Proceedings of the 7th international conference on NOVATECH, 27 June to 1 July 2010, Lyon, FranceGoogle Scholar
  29. Lu N, Anderson MT, Likos WJ, Mustoe GW (2007) A discrete element model for kaolinite aggregate formation during sedimentation. Int J Numer Anal Methods Geomech 32(8):965–980CrossRefGoogle Scholar
  30. Morquecho R, Pitt R, Clark S (2005) Pollutant associations with particulates in stormwater. In: 2005 World water and environmental resources congress. ASCE/EWRI. Anchorage, Alaska, May 2005. ASCE/EWRI, Reston, VA. Conference CD-ROMGoogle Scholar
  31. Morsi SA and Alexander AJ (1972). An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanisms  55(2):193–208Google Scholar
  32. Nascimento NO, Ellis JB, Baptista MB, Deutsch JC (1999) Using detention basins: operational experience and lessons. Urban Water 1:113–124CrossRefGoogle Scholar
  33. Papanicolaou AN, Elhakeem M, Krallis G, Orakash S, Edinger J (2008) Sediment transport modeling review—current and future developments. J Hydraul Eng 134(1):1–14CrossRefGoogle Scholar
  34. Sebastian C, Barraud S (2010) Behavior of a stormwater detention and settling basin face to face the micropollutants flow and ecotoxicity releases. 4th JDHU, 16–17 November 2010, Champs sur Marne, France, 8 pGoogle Scholar
  35. Spencer KL, Droppo IG, He C, Grapentine L, Exall K (2011) A novel tracer technique for the assessment of fine sediment dynamics in urban water management systems. Water Res 45(8):2595–2606CrossRefGoogle Scholar
  36. Stovin VR (1996) The prediction of sediment deposition in storage chambers based on laboratory observations and numerical simulation. Thesis, The University of SheffieldGoogle Scholar
  37. Stovin VR, Saul AJ (1996) Efficiency prediction for storage chambers using computational fluid dynamics. Water Sci Technol 33(9):163–170CrossRefGoogle Scholar
  38. Stovin VR, Saul AJ (2000) Computational fluid dynamics and the design of sewage storage chambers. Water Environ Manag 14(2):103–110CrossRefGoogle Scholar
  39. Torres A (2008) Stormwater settling process within a full-scale sedimentation system: elements of reflection for monitoring and modeling. Thesis, INSA LyonGoogle Scholar
  40. Torres A, Bertrand-Krajewski J-L (2007a) Evaluation of uncertainties in settling velocities of particles in urban stormwater runoff. 5th SPN conference, 28–31 August, Delft, Netherlands, 8 pGoogle Scholar
  41. Torres A, Bertrand-Krajewski J-L (2007b) Heterogeneity and variability of settling velocities of deposits in large stormwater retention and settling tanks. 5th SPN conference, 28–31 August, Delft, Netherlands, 8 pGoogle Scholar
  42. Versteeg H, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method. Prentice Hall, LondonGoogle Scholar
  43. Wong THF, Fletcher TD, Duncan HP, Jenkins GA (2006) Modeling urban stormwater treatment–a unified approach. Ecol Eng 27(1):58–70CrossRefGoogle Scholar
  44. Wood MG, Howes T, Keller J, Johns MR (1998) Two dimensional computational fluid dynamic models for waste stabilization ponds. Water Res 33(3):958–963CrossRefGoogle Scholar
  45. Wu W (2004) Depth-averaged two-dimensional numerical modeling of unsteady flow and nonuniform sediment transport in open channels. J Hydraul Eng 130(10):1013–1024CrossRefGoogle Scholar
  46. Wu W, Rodi W, Wenka T (2000) 3D numerical modeling of flow and sediment transport in open channels. J Hydraul Eng 126(1):4–15CrossRefGoogle Scholar
  47. Yan H, Lipeme Kouyi G, Bertrand-Krajewski J-L (2011) Modélisation numérique 3D des écoulements turbulents a surface libre charges en polluants particulaires dans un bassin de retenue - décantation des eaux pluviales. La Houille Blanche 2011(5):40–44CrossRefGoogle Scholar
  48. Zhang Z, Chen Q (2007) Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmos Environ 41(25):5236–5248CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hexiang Yan
    • 1
  • Gislain Lipeme Kouyi
    • 1
  • Carolina Gonzalez-Merchan
    • 1
  • Céline Becouze-Lareure
    • 1
  • Christel Sebastian
    • 1
  • Sylvie Barraud
    • 1
  • Jean-Luc Bertrand-Krajewski
    • 1
  1. 1.Université de Lyon, INSA-Lyon, LGCIEVilleurbanne CedexFrance

Personalised recommendations