Environmental Science and Pollution Research

, Volume 21, Issue 23, pp 13324–13334 | Cite as

Macroalgae mitigation potential for fish aquaculture effluents: an approach coupling nitrogen uptake and metabolic pathways using Ulva rigida and Enteromorpha clathrata

  • Jaime AníbalEmail author
  • Hélder T. Madeira
  • Liliana F. Carvalho
  • Eduardo Esteves
  • Cristina Veiga-Pires
  • Carlos Rocha
Combined effects of Environmental Stressors in the Aquatic Environment


Aquaculture effluents are rich in nitrogen compounds that may enhance local primary productivity, leading to the development of algae blooms. The goal of this study was to assess the potential use of naturally occurring green macroalgae (Ulva and Enteromorpha) as bioremediators for nitrogen-rich effluents from a fish aquaculture plant, by evaluating their respective uptake dynamics under controlled conditions. Ulva and Enteromorpha were incubated separately in aquaculture effluent from a local pilot station. Algae tissue and water samples were collected periodically along 4 h. For each sample, nitrate, nitrite, and ammonia concentrations were quantified in the effluent, while internal algae reserve pools and nitrate reductase activity (NRA) were determined within the algae tissues. Both macroalgae absorbed all dissolved inorganic nitrogen compounds in less than 1 h, favoring ammonia over nitrate. Ulva stored nitrate temporarily as an internal reserve and only used it after ammonia availability decreased, whereas Enteromorpha stored and metabolized ammonia and nitrate simultaneously. These distinct dynamics of ammonia and nitrate uptake supported an increase in NRA during the experiment. This study supports the hypothesis that Ulva or Enteromorpha can be used as bioremediators in aquaculture effluents to mitigate excess of dissolved inorganic nitrogen.


Bioremediation Aquaculture effluents Green macroalgae Nitrogen uptake Nitrate reductase Nutrient removal efficiency Nutrient uptake rate 



The research leading to these results was primarily funded by the project NITROLINKS–NITROgen loading into the Ria Formosa through Coastal Groundwater Discharge (CGD)—pathways, turnover and LINKS between land and sea in the Coastal Zone (PTDC/MAR/70247/2006) financed by the Portuguese Foundation for Science and Technology (FCT). This research was also partially supported by the European Regional Development Fund (ERDF) through the COMPETE-Operational Competitiveness Programme and national funds through Foundation for Science and Technology (FCT), under the projects “PEst-OE/MAR/UI0350/2011 (CIMA)” and “PEst-C/MAR/LA0015/2011 (CCMAR)”. We also like to thank Dr. Pedro Pousão from EPPO–IPMA for the aquaculture effluents used in the experiments.


  1. Abreu MH, Pereira R, Buschmann AH, Sousa-Pinto I, Yarish C (2011) Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. J Exp Mar Biol Ecol 407:190–199. doi: 10.1016/j.jembe.2011.06.034 CrossRefGoogle Scholar
  2. Aníbal J, Rocha C, Sprung M (2007) Mudflat surface morphology as a structuring agent of algae and associated macroepifauna communities: a case study in Ria Formosa. J Sea Res 57:36–46. doi: 10.1016/j.seares.2006.07.002 CrossRefGoogle Scholar
  3. Barsanti L, Gualtieri P (2006) Algae: anatomy, biochemistry, and biotechnology. CRC Press, Boca RatonGoogle Scholar
  4. Berges JA (1997) Miniview: algal nitrate reductases. Eur J Phycol 32:3–8. doi: 10.1080/09541449710001719315 CrossRefGoogle Scholar
  5. Bird KT, Habig C, DeBusk T (1982) Nitrogen allocation and storage patterns in Gracilaria tikvahiae (Rhodophyta). J Phycol 18:344–348. doi: 10.1111/j.1529-8817.1982.tb03194.x CrossRefGoogle Scholar
  6. Cabello-Pasini A, Macías-Carranza V, Abdala R, Korbee N, Figueroa FL (2010) Effect of nitrate concentration and UVR on photosynthesis, respiration, nitrate reductase activity, and phenolic compounds in Ulva rigida (Chlorophyta). J Appl Phycol 23:363–369. doi: 10.1007/s10811-010-9548-0 CrossRefGoogle Scholar
  7. Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86–89. doi: 10.1038/nature09904 CrossRefGoogle Scholar
  8. Cohen RA, Fong P (2005) Experimental evidence supports the use of δ15N content of the opportunistic green macroalga Enteromorpha intestinalis (Chlorophyta) to determine nitrogen sources to estuaries. J Phycol 41:287–293. doi: 10.1111/j.1529-8817.2005.04022.x CrossRefGoogle Scholar
  9. Chow F, de Oliveira MC, Pedersén M (2004) In vitro assay and light regulation of nitrate reductase in red alga Gracilaria chilensis. J Plant Physiol 161:769–776. doi: 10.1016/j.jplph.2004.01.002 CrossRefGoogle Scholar
  10. Corzo A, Niell FX (1991) Determination of nitrate reductase activity in Ulva rigida C Agardh by the in situ method. J Exp Mar Biol Ecol 146:181–191. doi: 10.1016/0022-0981(91)90024-Q CrossRefGoogle Scholar
  11. Corzo A, Niell FX (1994) Nitrate-reductase activity and in vivo nitrate-reduction rate in Ulva rigida illuminated by blue light. Mar Biol 120:17–23Google Scholar
  12. Cruz-Suárez LE, León A, Peña-Rodríguez A, Rodríguez-Peña G, Moll B, Ricque-Marie D (2010) Shrimp/Ulva co-culture: a sustainable alternative to diminish the need for artificial feed and improve shrimp quality. Aquaculture 301:64–68. doi: 10.1016/j.aquaculture.2010.01.021 CrossRefGoogle Scholar
  13. EEA (2010) The European environment: state and outlook 2010—marine and coastal environment. European Environment Agency, CopenhagenGoogle Scholar
  14. Fei X (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512:145–151. doi: 10.1023/B:HYDR.0000020320.68331.ce CrossRefGoogle Scholar
  15. Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. Chemie, WeinheimGoogle Scholar
  16. Hayden HS, Blomster J, Maggs CA, Silva PC, Stanhope MJ, Waaland JR (2003) Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur J Phycol 38:277–294. doi: 10.1080/1364253031000136321 CrossRefGoogle Scholar
  17. He P, Xu S, Zhang H, Wen S, Dai Y, Lin S, Yarish C (2008) Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea. Water Res 42:1281–1289. doi: 10.1016/j.watres.2007.09.023 CrossRefGoogle Scholar
  18. Hernández I, Tovar A, Vergara JJ (2002) Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters 2. Ammonium J App Phycol 14:375–384CrossRefGoogle Scholar
  19. Hong HS, Wang YJ, Wang DZ (2011) Response of phytoplankton to nitrogen addition in the Taiwan strait upwelling region: nitrate reductase and glutamine synthetase activities. Cont Shelf Res 31:S57–S66. doi: 10.1016/j.csr.2011.01.018 CrossRefGoogle Scholar
  20. Huo Y, Wu H, Chai Z, Xu S, Han F, Dong L, He P (2012) Bioremediation efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture system with Pseudosciaena crocea in Xiangshan harbor, China. Aquaculture 326–329:99–105. doi: 10.1016/j.aquaculture.2011.11.002 CrossRefGoogle Scholar
  21. Hurd CL, Berges JA, Osborne J, Harrison PJ (1995) An in vitro nitrate reductase assay for marine macroalgae: optimization and characterization of the enzyme for Fucus gardneri (phaeophyta). J Phycol 31:835–843. doi: 10.1111/j.0022-3646.1995.00835.x CrossRefGoogle Scholar
  22. Jiménez del Río M, Ramazanov Z, García-Reina G (1996) Ulva rigida (Ulvales, Chlorophyta) tank culture as biofilters for dissolved inorganic nitrogen from fishpond effluents. Hydrobiologia 326(327):61–66. doi: 10.1007/BF00047787 CrossRefGoogle Scholar
  23. Jones AB, Dennison WC, Preston NP (2001) Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture 193:155–178. doi: 10.1016/S0044-8486(00)00486-5 CrossRefGoogle Scholar
  24. Kang YH, Park SR, Chung IK (2011) Biofiltration efficiency and biochemical composition of three seaweed species cultivated in a fish-seaweed integrated culture. Algae 26:97–108. doi: 10.4490/algae.2011.26.1.097 CrossRefGoogle Scholar
  25. Kim JK, Kraemer GP, Neefus CD, Chung IK, Yarish C (2007) Effects of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast. J Appl Phycol 19:431–440. doi: 10.1007/s10811-006-9150-7 CrossRefGoogle Scholar
  26. Lartigue J, Sherman TD (2002) Field assays for measuring nitrate reductase activity in Enteromorpha sp. J Phycol 38:971–982. doi: 10.1046/j.1529-8817.2002.t01-2-01193.x CrossRefGoogle Scholar
  27. Lartigue J, Sherman TD (2005) Response of Enteromorpha sp. (Chlorophyceae) to a nitrate pulse: nitrate uptake, inorganic nitrogen storage and nitrate reductase activity. Mar Ecol Prog Ser 292:147–157. doi: 10.3354/meps292147 CrossRefGoogle Scholar
  28. Liu J, Wang Z, Lin W (2010) De-eutrophication of effluent wastewater from fish aquaculture by using marine green alga Ulva pertusa. Chin J Oceanol Limnol 28:201–208. doi: 10.1007/s00343-010-9245-5 CrossRefGoogle Scholar
  29. Lobban CS, Harrison PJ (1997) Seaweed ecology and physiology. Cambridge University Press, New YorkGoogle Scholar
  30. Luo MB, Liu F, Xu ZL (2012) Growth and nutrient uptake capacity of two co-occurring species, Ulva prolifera and Ulva linza. Aquat Bot 100:18–24. doi: 10.1016/j.aquabot.2012.03.006 CrossRefGoogle Scholar
  31. Marinho-Soriano E, Nunes SO, Carneiro MAA, Pereira DC (2009a) Nutrients’ removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass Bioenergy 33:327–331. doi: 10.1016/j.biombioe.2008.07.002 CrossRefGoogle Scholar
  32. Marinho-Soriano E, Panucci RA, Carneiro MAA, Pereira DC (2009b) Evaluation of Gracilaria caudata J. Agardh for bioremediation of nutrients from shrimp farming wastewater. Bioresour Technol 100:6192–6198CrossRefGoogle Scholar
  33. Marinho-Soriano E, Azevedo CAA, Trigueiro TG, Pereira DC, Carneiro MAA, Camara MR (2011) Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int Biodeterior Biodegrad 65:253–257. doi: 10.1016/j.biortech.2009.06.102 CrossRefGoogle Scholar
  34. Naldi M, Wheeler PA (2002) 15N measurements of ammonium and nitrate uptake by Ulva fenestrata (Chlorophyta) and Gracilaria pacifica (Rhodophyta): comparison of net nutrient disappearance, release of ammonium and nitrate, and 15N accumulation in algal tissue. J Phycol 38:135–144. doi: 10.1046/j.1529-8817.2002.01070.x CrossRefGoogle Scholar
  35. de Paula Silva PH, McBride S, de Nys R, Paul NA (2008) Integrating filamentous “green tide” algae into tropical pond-based aquaculture. Aquaculture 284:74–80. doi: 10.1016/j.aquaculture.2008.07.035 CrossRefGoogle Scholar
  36. Pregnall AM, Smith RD, Alberte RS (1987) Glutamine synthetase activity and free amino acid pools of eelgrass (Zostera marina L.) roots. J Exp Mar Biol Ecol 106:211–228. doi: 10.1016/0022-0981(87)90094-3 CrossRefGoogle Scholar
  37. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  38. Ritz C, Streibig JC (2008) Nonlinear regression with R. Springer, New YorkGoogle Scholar
  39. Skriptsova AV, Miroshnikova NV (2011) Laboratory experiment to determine the potential of two macroalgae from the Russian Far-East as biofilters for integrated multi-trophic aquaculture (IMTA). Bioresour Technol 102:3149–3154. doi: 10.1016/j.biortech.2010.10.093 CrossRefGoogle Scholar
  40. Teichberg M, Heffner LR, Fox S, Valiela I (2007) Nitrate reductase and glutamine synthetase activity, internal N pools, and growth of Ulva lactuca: responses to long and short-term N supply. Mar Biol 151:1249–1259. doi: 10.1007/s00227-006-0561-4 CrossRefGoogle Scholar
  41. Thomas TE, Harrison PJ (1985) Effect of nitrogen supply on nitrogen uptake, accumulation and assimilation in Porphyra perforata (Rhodophyta). Mar Biol 85:269–278. doi: 10.1007/BF00393247 CrossRefGoogle Scholar
  42. Thompson SM, Valiela I (1999) Effect of nitrogen loading on enzyme activity of macroalgae in estuaries in Waquoit Bay. Bot Mar 42:519–529CrossRefGoogle Scholar
  43. Troell M, Halling C, Nilsson A, Buschmann AH, Kautsky N, Kautsky L (1997) Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture 156:45–61. doi: 10.1016/S0044-8486(97)00080-X CrossRefGoogle Scholar
  44. Xu D, Gao Z, Zhang X, Qi Z, Meng C, Zhuang Z, Ye N (2011) Evaluation of the potential role of the macroalga Laminaria japonica for alleviating coastal eutrophication. Bioresour Technol 102:9912–9918. doi: 10.1016/j.biortech.2011.08.035 CrossRefGoogle Scholar
  45. Yokoyama H, Ishihi Y (2010) Bioindicator and biofilter function of Ulva spp. (Chlorophyta) for dissolved inorganic nitrogen discharged from a coastal fish farm—potential role in integrated multi-trophic aquaculture. Aquaculture 310:74–83. doi: 10.1016/j.aquaculture.2010.10.018 CrossRefGoogle Scholar
  46. Young EB, Berges JA, Dring MJ (2009) Physiological responses of intertidal marine brown algae to nitrogen deprivation and resupply of nitrate and ammonium. Physiol Plant 135:400–411. doi: 10.1111/j.1399-3054.2008.01199.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jaime Aníbal
    • 1
    • 2
    Email author
  • Hélder T. Madeira
    • 1
    • 2
  • Liliana F. Carvalho
    • 1
    • 3
  • Eduardo Esteves
    • 2
    • 4
  • Cristina Veiga-Pires
    • 1
    • 3
  • Carlos Rocha
    • 5
  1. 1.Centro de Investigação Marinha e Ambiental (CIMA)Universidade do AlgarveFaroPortugal
  2. 2.Instituto Superior de EngenhariaUniversidade do AlgarveFaroPortugal
  3. 3.Faculdade de Ciências e TecnologiaUniversidade do AlgarveFaroPortugal
  4. 4.Centro de Ciências do Mar (CCMAR)FaroPortugal
  5. 5.Biogeochemistry Research Group, School of Natural SciencesTrinity College DublinDublin 2Ireland

Personalised recommendations