Environmental Science and Pollution Research

, Volume 21, Issue 5, pp 3304–3317 | Cite as

Large-scale geographical variation in eggshell metal and calcium content in a passerine bird (Ficedula hypoleuca)

  • Suvi Ruuskanen
  • Toni Laaksonen
  • Judith Morales
  • Juan Moreno
  • Rafael Mateo
  • Eugen Belskii
  • Andrey Bushuev
  • Antero Järvinen
  • Anvar Kerimov
  • Indrikis Krams
  • Chiara Morosinotto
  • Raivo Mänd
  • Markku Orell
  • Anna Qvarnström
  • Fred Slater
  • Vallo Tilgar
  • Marcel E. Visser
  • Wolfgang Winkel
  • Herwig Zang
  • Tapio Eeva
Research Article

Abstract

Birds have been used as bioindicators of pollution, such as toxic metals. Levels of pollutants in eggs are especially interesting, as developing birds are more sensitive to detrimental effects of pollutants than adults. Only very few studies have monitored intraspecific, large-scale variation in metal pollution across a species' breeding range. We studied large-scale geographic variation in metal levels in the eggs of a small passerine, the pied flycatcher (Ficedula hypoleuca), sampled from 15 populations across Europe. We measured 10 eggshell elements (As, Cd, Cr, Cu, Ni, Pb, Zn, Se, Sr, and Ca) and several shell characteristics (mass, thickness, porosity, and color). We found significant variation among populations in eggshell metal levels for all metals except copper. Eggshell lead, zinc, and chromium levels decreased from central Europe to the north, in line with the gradient in pollution levels over Europe, thus suggesting that eggshell can be used as an indicator of pollution levels. Eggshell lead levels were also correlated with soil lead levels and pH. Most of the metals were not correlated with eggshell characteristics, with the exception of shell mass, or with breeding success, which may suggest that birds can cope well with the current background exposure levels across Europe.

Keywords

Heavy metals Lead Biomonitoring Bird Reproductive success Ficedula Flycatcher 

Notes

Acknowledgments

This study was financially supported by Turku University Foundation, Finnish Cultural Foundation, Kone Foundation (grants to SR) and Emil Aaltonen Foundation (a grant to TL), and Academy of Finland (a grant to TE, project 265859). We thank all field assistants and especially Paul Ek at Åbo Akademi for conducting the eggshell metal analyses. EB was financed by Ural Branch of RAS (project 12-М-45-2072). Field work and analyses of eggshell structure and color were financed by project CGL2010-19233-C03-02 (Spanish Ministry of Science) to J. Moreno. We also thank Pablo Camarero for help in analyses of biliverdin pigment and Laura Tormo and Marta Furio for performing electron microscopy images. J. Morales is supported by a contract “Junta de Ampliación de Estudios” funded by the Spanish Research Council-CSIC and the European Social Fund. Data collection in Moscow region was financially supported by RFBR (Russia, grants to AK and AB). Data collection in Estonia was financially supported by the Estonian Ministry of Education and Science (target-financing project number 0180004s09) and the European Regional Development Fund (Center of Excellence FIBIR). MEV was supported by a NWO-VICI grant.

References

  1. Barton JC, Conrad ME, Harrison L, Nuby S (1978) Effects of calcium on absorbtion on retention of lead. J Lab Clin Med 91(3):366–376Google Scholar
  2. Belskii EA, Lugas'kova NV, Karfidova AA (2005) Reproductive parameters of adult birds and morphophysiological characteristics of chicks in the pied flycatcher (Ficedula hypoleuca Pall.) in technogenically polluted habitats. Russ J Ecol 36(5):329–335. doi: 10.1007/s11184-005-0080-4 CrossRefGoogle Scholar
  3. Bendell LI (2011) Trace metal depositional patterns from an open pit mining activity as revealed by archived avian gizzard contents. Sci Total Environ 409(6):1193–1197. doi: 10.1016/j.scitotenv.2010.12.014 CrossRefGoogle Scholar
  4. Berglund AMM, Koivula MJ, Eeva T (2011) Species- and age-related variation in metal exposure and accumulation of two passerine bird species. Environ Pollut 159(10):2368–2374. doi: 10.1016/j.envpol.2011.07.001 CrossRefGoogle Scholar
  5. Blom J, Lilja C (2004) A comparative study of growth, skeletal development and eggshell composition in some species of birds. J Zool 262:361–369. doi: 10.1017/s0952836903004746 CrossRefGoogle Scholar
  6. Burger J (1993) Metals in avian feathers: bioindicators of environmental pollution. Rev Environ Toxicol 5:203–311Google Scholar
  7. Burger J, Gochfeld M (1991) Cadmium and lead in common tern eggs (Aves, Sterna hirundo)—relationships between levels in parents and eggs. Environ Monit Assess 16(3):253–258. doi: 10.1007/bf00397612 CrossRefGoogle Scholar
  8. Burger J, Gochfeld M (1996) Heavy metal and selenium levels in Franklin's gull (Larus pipixcan) parents and their eggs. Arch Environ Contam Toxicol 30(4):487–491CrossRefGoogle Scholar
  9. Burger J, Gochfeld M (2000) Effects of lead on birds (Laridae): a review of laboratory and field studies. J Toxicol Environ Health Part B Crit Rev 3(2):59–78CrossRefGoogle Scholar
  10. Dauwe T, Bervoets L, Blust R, Pinxten R, Eens M (1999) Are eggshells and egg contents of Great and Blue Tits suitable as indicators of heavy metal pollution? Belg J Zool 129(2):439–447Google Scholar
  11. Dauwe T, Janssens E, Bervoets L, Blust R, Eens M (2004a) Relationships between metal concentrations in great tit nestlings and their environment and food. Environ Pollut 131(3):373–380. doi: 10.1016/j.envpol.2004.03.009 CrossRefGoogle Scholar
  12. Dauwe T, Janssens E, Kempenaers B, Eens M (2004b) The effect of heavy metal exposure on egg size, eggshell thickness and the number of spermatozoa in blue tit Parus caeruleus eggs. Environ Pollut 129(1):125–129. doi: 10.1016/j.envpol.2003.09.028 CrossRefGoogle Scholar
  13. Dauwe T, Janssens E, Bervoets L, Blust R, Eens M (2005) Heavy-metal concentrations in female laying great tits (Parus major) and their clutches. Arch Environ Contam Toxicol 49(2):249–256. doi: 10.1007/s00244-003-0209-z CrossRefGoogle Scholar
  14. Dauwe T, Snoeijs T, Bervoets L, Blust R, Eens M (2006) Calcium availability influences lead accumulation in a passerine bird. Anim Biol 56(3):289–298. doi: 10.1163/157075606778441822 CrossRefGoogle Scholar
  15. DeSesso JM, Jacobson CF, Scialli AR, Farr CH, Holson JF (1998) An assessment of the developmental toxicity of inorganic arsenic. Reprod Toxicol 12(4):385–433. doi: 10.1016/s0890-6238(98)00021-5 CrossRefGoogle Scholar
  16. Dietert RR, Lee JE, Bunn TL (2002) Developmental immunotoxicology: emerging issues. Hum Exp Toxicol 21(9–10):479–485CrossRefGoogle Scholar
  17. Eens M, Pinxten R, Verheyen RF, Blust R, Bervoets L (1999) Great and blue tits as indicators of heavy metal contamination in terrestrial ecosystems. Ecotoxicol Environ Saf 44(1):81–85. doi: 10.1006/eesa.1999.1828 CrossRefGoogle Scholar
  18. Eens M, Jaspers VLB, Van den Steen E et al (2013) Can starling eggs be useful as a biomonitoring tool to study organohalogenated contaminants on a worldwide scale? Environ Int 51:141–9. doi: 10.1016/j.envint.2012.11.003 CrossRefGoogle Scholar
  19. Eeva T, Lehikoinen E (1995) shell quality, clutch size and hatching success of the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca) in an air-pollution gradient. Oecologia 102(3):312–323CrossRefGoogle Scholar
  20. Eeva T, Lehikoinen E (1996) Growth and mortality of nestling great tits (Parus major) and pied flycatchers (Ficedula hypoleuca) in a heavy metal pollution gradient. Oecologia 108(4):631–639CrossRefGoogle Scholar
  21. Eeva T, Lehikoinen E (2004) Rich calcium availability diminishes heavy metal toxicity in pied flycatcher. Funct Ecol 18(4):548–553CrossRefGoogle Scholar
  22. Eeva T, Ryoma M, Riihimaki J (2005) Pollution-related changes in diets of two insectivorous passerines. Oecologia 145(4):629–639. doi: 10.1007/s00442-005-0145-x CrossRefGoogle Scholar
  23. Eeva T, Ahola M, Lehikoinen E (2009) Breeding performance of blue tits (Cyanistes caeruleus) and great tits (Parus major) in a heavy metal polluted area. Environ Pollut 157(11):3126–3131. doi: 10.1016/j.envpol.2009.05.040 CrossRefGoogle Scholar
  24. Fox J (1997) Applied regression, linear models, and related methods. Sage, Thousand OaksGoogle Scholar
  25. Franson JC, Hollmen T, Poppenga RH, Hario M, Kilpi M, Smith MR (2000) Selected trace elements and organochlorines: some findings in blood and eggs of nesting common eiders (Somateria mollissima) from Finland. Environ Toxicol Chem 19(5):1340–1347. doi: 10.1897/1551-5028(2000)019<1340:steaos>2.3.co;2 CrossRefGoogle Scholar
  26. Furness RW (1993) Birds as monitors of pollutants. In: Furness RW, Greenwood JJD (eds) Birds as monitors of environmental change. Chapman & Hall, London, pp 86–143CrossRefGoogle Scholar
  27. Gochfeld M (1997) Spatial patterns in a bioindicator: heavy metal and selenium concentration in eggs of herring gulls (Larus argentatus) in the New York bight. Arch Environ Contam Toxicol 33(1):63–70CrossRefGoogle Scholar
  28. Hanley D, Doucet SM (2012) Does environmental contamination influence egg coloration? A long-term study in herring gulls. J Appl Ecol 49(5):1055–1063. doi: 10.1111/j.1365-2664.2012.02184.x CrossRefGoogle Scholar
  29. Harmens H, Norris DA, Steinnes E et al (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ Pollut 158(10):3144–3156. doi: 10.1016/j.envpol.2010.06.039 CrossRefGoogle Scholar
  30. Hui CA (2002) Concentrations of chromium, manganese, and lead in air and in avian eggs. Environ Pollut 120(2):201–206CrossRefGoogle Scholar
  31. Jagannath A, Shore RF, Walker LA, Ferns PN, Gosler AG (2008) Eggshell pigmentation indicates pesticide contamination. J Appl Ecol 45(1):133–140. doi: 10.1111/j.1365-2664.2007.01386.x CrossRefGoogle Scholar
  32. Janssens E, Dauwe T, Pinxten R, Eens M (2003) Breeding performance of great tits (Parus major) along a gradient of heavy metal pollution. Environ Toxicol Chem 22(5):1140–1145. doi: 10.1897/1551-5028(2003)022<1140:bpogtp>2.0.co;2 CrossRefGoogle Scholar
  33. Koptsik GN, Smirnova IE, Livantsova S, Koptsik SV, Zakharova AI, Vostretsova EV (2011) Contribution of litterfall and forest floor to biological cycling of elements in forest ecosystems of Zvenigorod Biostation. In: Ulanova NG, Gavrilov VM (eds) Proceedings of SN Skadovsky Zvenigorod Biological Station, vol 5. Moscow University Press, Moscow, pp 18–32Google Scholar
  34. Lado LR, Hengl T, Reuter HI (2008) Heavy metals in European soils: a geostatistical analysis of the FOREGS Geochemical database. Geoderma 148(2):189–199. doi: 10.1016/j.geoderma.2008.09.020 CrossRefGoogle Scholar
  35. Lessells CM, Boag PT (1987) Unrepetable repeatabilities—a common mistake. Auk 104(1):116–121CrossRefGoogle Scholar
  36. Littell RC, Milliken GA, Stroup WW, Wolfinger RD (2006) SAS system for mixed models. SAS Institute Inc., CaryGoogle Scholar
  37. Lundberg A, Alatalo R (1992) The pied flycatcher. Poyser, LondonGoogle Scholar
  38. Mägi M, Mänd R, Tamm H, Sisask E, Kilgas P, Tilgar V (2009) Low reproductive success of great tits in the preferred habitat: a role of food availability. Ecoscience 16(2):145–157. doi: 10.2980/16-2-3215 CrossRefGoogle Scholar
  39. Mateo R, Guitart R (2000) The effects of grit supplementation and feed type on steel-shot ingestion in mallards. Prev Vet Med 44(3–4):221–229. doi: 10.1016/s0167-5877(00)00101-x CrossRefGoogle Scholar
  40. Mateo R, Castells G, Green AJ, Godoy C, Cristofol C (2004) Determination of porphyrins and biliverdin in bile and excreta of birds by a single liquid chromatography–ultraviolet detection analysis. J Chromatogr B Anal Technol Biomed Life Sci 810(2):305–311. doi: 10.1016/j.jchromb.2004.08.019 CrossRefGoogle Scholar
  41. Mateo R, Taggart MA, Green AJ et al (2006) Altered porphyrin excretion and histopathology of greylag geese (Anser anser) exposed to soil contaminated with lead and arsenic in the Guadalquivir Marshes, southwestern Spain. Environ Toxicol Chem 25(1):203–212. doi: 10.1897/04-460r.1 CrossRefGoogle Scholar
  42. Mora MA (2003) Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona. Environ Pollut 125(3):393–400. doi: 10.1016/s0269-7491(03)00108-8 CrossRefGoogle Scholar
  43. Mora MA, Brattin B, Baxter C, Rivers JW (2011) Regional and interspecific variation in Sr, Ca, and Sr/Ca ratios in avian eggshells from the USA. Ecotoxicology 20(6):1467–1475. doi: 10.1007/s10646-011-0703-4 CrossRefGoogle Scholar
  44. Morales J, Ruuskanen S, Laaksonen T, et al. (2012) Variation in eggshell traits between geographically distant populations of pied flycatchers Ficedula hypoleuca. J Avian Biol 44(2):111−120Google Scholar
  45. Moreno J, Lobato E, Morales J et al (2006) Experimental evidence that egg color indicates female condition at laying in a songbird. Behav Ecol 17(4):651–655. doi: 10.1093/beheco/ark014 CrossRefGoogle Scholar
  46. Nyholm NEI (1998) Influence of heavy metal exposure during different phases of the ontogeny on the development of pied flycatchers, Ficedula hypoleuca, in natural populations. Arch Environ Contam Toxicol 35(4):632–637CrossRefGoogle Scholar
  47. Orlowski G, Kasprzykowski Z, Dobicki W, Pokorny P, Polechonski R (2010) Geographical and habitat differences in concentrations of copper, zinc and arsenic in eggshells of the Rook Corvus frugilegus in Poland. J Ornithol 151(2):279–286. doi: 10.1007/s10336-009-0453-8 CrossRefGoogle Scholar
  48. Pahl R, Winkler DW, Graveland J, Batterman BW (1997) Songbirds do not create long-term stores of calcium in their legs prior to laying: results from high-resolution radiography. Proc R Soc Lond B Biol Sci 264(1379):239–244CrossRefGoogle Scholar
  49. Reuter HI, Lado LR, Hengl T, Montanarella L (2008) Continental-scale digital soil mapping using European soil profile data: soil pH. Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie 19:91–102Google Scholar
  50. Ruuskanen S, Siitari H, Eeva T, et al (2011) Geographical variation in egg mass and egg content in a passerine bird. Plos One 6(11) doi:  10.1371/journal.pone.0025360
  51. Scheuhammer AM (1987) The chronic toxicity of aluminium, cadmium, mercury, and lead in birds—a review. Environ Pollut 46(4):263–295. doi: 10.1016/0269-7491(87)90173-4 CrossRefGoogle Scholar
  52. Scheuhammer AM (1996) Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds. Environ Pollut 94(3):337–343. doi: 10.1016/s0269-7491(96)00084-x CrossRefGoogle Scholar
  53. Siefferman L, Navara KJ, Hill GE (2006) Egg coloration is correlated with female condition in eastern bluebirds (Sialia sialis). Behav Ecol Sociobiol 59(5):651–656. doi: 10.1007/s00265-005-0092-x CrossRefGoogle Scholar
  54. Sparling DW, Eisemann JD, Kuenzel W (2004) Contaminant exposure and effects in red-winged blackbirds inhabiting stormwater retention ponds. Environ Manag 33(5):719–729. doi: 10.1007/s00267-003-0058-6 CrossRefGoogle Scholar
  55. Swaileh KM, Sansur R (2006) Monitoring urban heavy metal pollution using the house sparrow (Passer domesticus). J Environ Monit 8(1):209–213. doi: 10.1039/b510635d CrossRefGoogle Scholar
  56. Swiergosz R, Sawicka-Kapusta K, Nyholm NEI, Zwolinska A, Orkisz A (1998) Effects of environmental metal pollution on breeding populations of pied and collared flycatchers in Niepolomice Forest, Southern Poland. Environ Pollut 102(2–3):213–220. doi: 10.1016/s0269-7491(98)00093-1 CrossRefGoogle Scholar
  57. Tilgar V, Mänd R, Leivits A (1999) Effect of calcium availability and habitat quality on reproduction in pied flycatcher Ficedula hypoleuca and great tit Parus major. J Avian Biol 30(4):383–391. doi: 10.2307/3677010 CrossRefGoogle Scholar
  58. Vodyanitskii YN, Plekhanova IO, Prokopovich EV, Savichev AT (2011) Soil contamination with emissions of non-ferrous metallurgical plants. Eurasian Soil Sci 44:217–226CrossRefGoogle Scholar
  59. Vorobeichik EL, Pishchulin PG (2009) Effect of individual trees on the pH and the content of heavy metals in forest litters upon industrial contamination. Eurasian Soil Sci 42(8):861–873. doi: 10.1134/s1064229309080043 CrossRefGoogle Scholar
  60. Vorob'eva LA, Avdon'kin AA (2006) Potential soil acidity: notions and parameters. Eurasian Soil Sci 39(4):377–386. doi: 10.1134/s1064229306040041 CrossRefGoogle Scholar
  61. Wäreborn I (1992) Changes in land mollusk fauna and soil chemistry in an inland district in southern Sweden. Ecography 15(1):62–69. doi: 10.1111/j.1600-0587.1992.tb00009.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Suvi Ruuskanen
    • 1
    • 2
  • Toni Laaksonen
    • 1
  • Judith Morales
    • 3
  • Juan Moreno
    • 3
  • Rafael Mateo
    • 4
  • Eugen Belskii
    • 5
  • Andrey Bushuev
    • 6
  • Antero Järvinen
    • 7
  • Anvar Kerimov
    • 6
  • Indrikis Krams
    • 8
  • Chiara Morosinotto
    • 1
  • Raivo Mänd
    • 9
  • Markku Orell
    • 10
  • Anna Qvarnström
    • 11
  • Fred Slater
    • 12
  • Vallo Tilgar
    • 9
  • Marcel E. Visser
    • 2
  • Wolfgang Winkel
    • 13
  • Herwig Zang
    • 14
  • Tapio Eeva
    • 1
  1. 1.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland
  2. 2.Department of Animal EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenNetherlands
  3. 3.Departamento de Ecologıa EvolutivaMuseo Nacional de Ciencias Naturales-CSICMadridSpain
  4. 4.Instituto de Investigación en Recursos Cinegéticos (IREC)CSIC-UCLM-JCCMCiudad RealSpain
  5. 5.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  6. 6.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  7. 7.Kilpisjärvi Biological StationUniversity of HelsinkiHelsinkiFinland
  8. 8.Institute of Systematic BiologyDaugavpils UniversityDaugavpilsLatvia
  9. 9.Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  10. 10.Department of BiologyUniversity of OuluOuluFinland
  11. 11.Department of Animal EcologyUniversity of UppsalaUppsalaSweden
  12. 12.School of BiosciencesCardiff UniversityCardiffUK
  13. 13.Institute of Avian Research ‘Vogelwarte Helgoland’WilhelmshavenGermany
  14. 14.GoslarGermany

Personalised recommendations