Environmental Science and Pollution Research

, Volume 21, Issue 4, pp 2856–2864 | Cite as

Aerobic inhibition assessment for anaerobic treatment effluent of antibiotic production wastewater

  • Zeynep Cetecioglu
Research Article


Biological treatment of antibiotic production effluents is an economical approach; however, there are still difficulties to overcome because of the recalcitrant characteristics of these compounds to biodegradation. This study aims to reveal that anaerobic treatment technology can be an option as pretreatment before the activated sludge system treatment to treat antibiotic production effluents. The ISO 8192 method was chosen to test the inhibitory effect of raw and treated antibiotic production effluents in this work. Inhibition tests, which were applied according to ISO 8192, highlighted that the anaerobic treatment effluent is less inhibitory than antibiotic production effluent for activated sludge system. Early EC50 concentrations (30-min values) of raw and treated wastewaters were lower than 180-min values. Also, triple effects (sulfamethoxazole–erythromycin–tetracycline) of antibiotics are more toxic than dual effects (sulfamethoxazole–tetracycline). In light of the experimental results obtained and their evaluation, it can be concluded that anaerobic digestion can be applied as a biological pretreatment method for pharmaceutical industry wastewater including antibiotic mixtures prior to aerobic treatment.


Anaerobic effluent ISO 8192 Antibiotic Activated sludge Inhibition 



This study was supported by the Scientific Research Projects of Istanbul Technical University (project no: 36966).


  1. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DCGoogle Scholar
  2. Alexy R, Kümpel T, Kümmerer K (2004) Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere 57:505–512. doi: 10.1016/j.chemosphere.2004.06.024 CrossRefGoogle Scholar
  3. Amin MM, Zilles JL, Greiner J et al (2006) Influence of the antibiotic erythromycin on anaerobic treatment of a pharmaceutical wastewater. Environ Sci Technol 40:3971–3977. doi: 10.1021/es060428j CrossRefGoogle Scholar
  4. Arslan-Alaton I, Caglayan AE (2006) Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent. Ecotoxicol Environ Saf 63:131–140. doi: 10.1016/j.ecoenv.2005.02.014 CrossRefGoogle Scholar
  5. Batt AL, Aga DS (2005) Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and groundwater contamination. Anal Chem 77:2940–2947. doi: 10.1021/ac048512+ CrossRefGoogle Scholar
  6. Batt AL, Bruce IB, Aga DS (2006) Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ Pollut 142:295–302. doi: 10.1016/j.envpol.2005.10.010 CrossRefGoogle Scholar
  7. Cetecioglu Z (2011) Evaluation of anaerobic biodegradability characteristics of antibiotics and toxic/inhibitory effect on mixed microbial culture. 1–236Google Scholar
  8. Cetecioglu Z, Ince B, Azman S, et al. (2013a) Determination of anaerobic and anoxic biodegradation capacity of sulfamethoxasole and the effects on mixed microbial culture. Biodegrad. / B. 1Google Scholar
  9. Cetecioglu Z, Ince B, Gros M et al (2013b) Chronic impact of tetracycline on the biodegradation of an organic substrate mixture under anaerobic conditions. Water Res. doi: 10.1016/j.watres.2013.02.053 Google Scholar
  10. Cetecioglu Z, Ince B, Orhon D, Ince O (2012) Acute inhibitory impact of antimicrobials on acetoclastic methanogenic activity. Bioresour Technol 114:109–116. doi: 10.1016/j.biortech.2012.03.020 CrossRefGoogle Scholar
  11. Chopra I, Roberts M (2001) Tetracycline antibiotics mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbology Mol Biol Rev 65:232–260CrossRefGoogle Scholar
  12. Cokgor EU, Ozdemir S, Karahan O et al (2007) Critical appraisal of respirometric methods for metal inhibition on activated sludge. J Hazard Mater 139:332–339. doi: 10.1016/j.jhazmat.2006.06.038 CrossRefGoogle Scholar
  13. Dalzell DJB, Alte S, Aspichueta E et al (2002) A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge. Chemosphere 47:535–545CrossRefGoogle Scholar
  14. Deng Y, Zhang Y, Gao Y et al (2012) Microbial community compositional analysis for series reactors treating high level antibiotic wastewater. Environ Sci Technol 46:795–801. doi: 10.1021/es2025998 CrossRefGoogle Scholar
  15. Diaz E, Polo AM, Mohedano AF et al (2012) On the biodegradability of nitrophenols and their reaction products by catalytic hydrogenation*. J Chem Technol Biotechnol 87:1263–1269. doi: 10.1002/jctb.3810 CrossRefGoogle Scholar
  16. Drillia P, Dokianakis SN, Fountoulakis MS et al (2005) On the occasional biodegradation of pharmaceuticals in the activated sludge process: the example of the antibiotic sulfamethoxazole. J Hazard Mater 122:259–265. doi: 10.1016/j.jhazmat.2005.03.009 CrossRefGoogle Scholar
  17. Fountoulakis MS, Stamatelatou K, Lyberatos G (2008) The effect of pharmaceuticals on the kinetics of methanogenesis and acetogenesis. Bioresour Technol 99:7083–7090. doi: 10.1016/j.biortech.2008.01.008 CrossRefGoogle Scholar
  18. Gartiser S, Urich E, Alexy R, Kümmerer K (2007a) Ultimate biodegradation and elimination of antibiotics in inherent tests. Chemosphere 67:604–613. doi: 10.1016/j.chemosphere.2006.08.038 CrossRefGoogle Scholar
  19. Gartiser S, Urich E, Alexy R, Kümmerer K (2007b) Anaerobic inhibition and biodegradation of antibiotics in ISO test schemes. Chemosphere 66:1839–1848. doi: 10.1016/j.chemosphere.2006.08.040 CrossRefGoogle Scholar
  20. Gendig C, Domogala G, Agnoli F et al (2003) Evaluation and further development of the activated sludge respiration inhibition test. Chemosphere 52:143–149. doi: 10.1016/S0045-6535(03)00111-5 CrossRefGoogle Scholar
  21. Gutiérrez M, Etxebarria J, de las Fuentes L (2002) Evaluation of wastewater toxicity: comparative study between Microtox and activated sludge oxygen uptake inhibition. Water Res 36:919–924CrossRefGoogle Scholar
  22. Holzgrabe U, Deubel A (2007) Development of an enhanced separation of erythromycin and its related substances by liquid chromatography. J Pharm Biomed Anal 43:493–498CrossRefGoogle Scholar
  23. ISO8192 (1999) Water Quality-test for inhibition of oxygen consumption by activated sludgeGoogle Scholar
  24. Karci A, Balcioglu AI (2009) Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci Total Environ 407:4652–4664CrossRefGoogle Scholar
  25. Kümmerer K (2009a) Antibiotics in the aquatic environment – a review – part I. Chemosphere 75:417–434. doi: 10.1016/j.chemosphere.2008.11.086 CrossRefGoogle Scholar
  26. Kümmerer K (2009b) Antibiotics in the aquatic environment – a review – part II. Chemosphere 75:435–441. doi: 10.1016/j.chemosphere.2008.12.006 CrossRefGoogle Scholar
  27. Kümmerer K, Alexy R, Hüttig J, Schöll A (2004) Standardized tests fail to assess the effects of antibiotics on environmental bacteria. Water Res 38:2111–2116. doi: 10.1016/j.watres.2004.02.004 CrossRefGoogle Scholar
  28. Miao X-S, Bishay F, Chen M, Metcalfe CD (2004) Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ Sci Technol 38:3533–3541CrossRefGoogle Scholar
  29. Ozbayram EG (2012) Determination of the synergistic acute effects of antibiotics on methanogenic pathway. Master Thesis, Environmental Engineering Department, Istanbul Technical UniversityGoogle Scholar
  30. Pala-Ozkok I, Kor-Bicakci G, Ural A, et al. (2013) Modeling acute impact of sulfamethoxazole on the utilization of simple and complex substrates by fast growing microbial culture. J Chem Technol Biotechnol n/a–n/a. doi: 10.1002/jctb.4165
  31. Prado N, Monteleon C, Ochoa J, Amrane A (2010) Evaluation of the toxicity of veterinary antibiotics on activated sludge using modified Sturm tests—application to tetracycline and tylosine antibiotics. J Chem Technol Biotechnol 85:471–477. doi: 10.1002/jctb.2312 Google Scholar
  32. Radjenović J, Petrović M, Barceló D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43:831–841. doi: 10.1016/j.watres.2008.11.043 CrossRefGoogle Scholar
  33. Ricco G, Tomei MCMC, Ramadori R, Laera G (2004) Toxicity assessment of common xenobiotic compounds on municipal activated sludge: comparison between respirometry and Microtox. Water Res 38:2103–2110. doi: 10.1016/j.watres.2004.01.020 CrossRefGoogle Scholar
  34. Segura PA, François M, Gagnon C, Sauvé S (2009) Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters. Environ Health Perspect 117:675–684. doi: 10.1289/ehp.11776 CrossRefGoogle Scholar
  35. Shimada T, Zilles JL, Morgenroth E, Raskin L (2008) Inhibitory effects of the macrolide antimicrobial tylosin on anaerobic treatment. Biotechnol Bioeng 101:73–82. doi: 10.1002/bit.21864 CrossRefGoogle Scholar
  36. Sweetman SC (2009) Martindale: the complete drug reference, 36th edn. Pharmaceutical Press, London, UKGoogle Scholar
  37. Wise R (2002) Leading articles Antimicrobial resistance: priorities for action. J Antimicrobail Chemother 49:585–586CrossRefGoogle Scholar
  38. Yang S-F, Lin C-F, Lin AY-C, Hong P-KA (2011) Sorption and biodegradation of sulfonamide antibiotics by activated sludge: experimental assessment using batch data obtained under aerobic conditions. Water Res 45:3389–3397. doi: 10.1016/j.watres.2011.03.052 CrossRefGoogle Scholar
  39. Yang S-F, Lin C-F, Wu C-J et al (2012) Fate of sulfonamide antibiotics in contact with activated sludge–sorption and biodegradation. Water Res 46:1301–1308. doi: 10.1016/j.watres.2011.12.035 CrossRefGoogle Scholar
  40. Zhang H, Liu P, Feng Y, Yang F (2013) Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China. Mar Pollut Bull. doi: 10.1016/j.marpolbul.2013.05.007 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Environmental Engineering Department, Civil Engineering FacultyIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations