Advertisement

Environmental Science and Pollution Research

, Volume 21, Issue 4, pp 3005–3020 | Cite as

Bages-Sigean and Canet-St Nazaire lagoons (France): physico-chemical characteristics and contaminant concentrations (Cu, Cd, PCBs and PBDEs) as environmental quality of water and sediment

  • Florence VouvéEmail author
  • Roselyne Buscail
  • Dominique Aubert
  • Pierre Labadie
  • Marc Chevreuil
  • Christophe Canal
  • Marion Desmousseaux
  • Fabrice Alliot
  • Elsa Amilhat
  • Elisabeth Faliex
  • Séverine Paris-Palacios
  • Sylvie Biagianti-Risbourg
Research Article

Abstract

Environmental characteristics in water and sediments of two contrasted coastal Mediterranean lagoons, Bages-Sigean and Canet-St Nazaire, were measured over a three season survey. The urban pollution (treatment plant discharges) is very important in Canet-St Nazaire lagoon reflecting untreated sewages, while in Bages-Sigean, the northern part appears more impacted due to larger anthropogenic inputs. Dissolved Cd concentrations are on the whole similar in both lagoons, whereas Cu concentrations are by far higher in lagoon Canet-St Nazaire. Cu concentrations appear to be highly dependent on dissolved organic carbon whereas salinity seems to control Cd variations. Concerning the sediments, the confined northern part of lagoon Bages-Sigean shows organic carbon and total nitrogen enrichment whereas lipid concentrations are much higher in the Canet-St Nazaire lagoon. Cu complexation seems to be strongly related to organic matter as evidenced by the two significant positive relationships, on one hand between Cu and organic carbon, and on the other hand, between Cu and lipids. On the contrary, Cd concentrations appear to be mainly controlled by carbonates. PCBs and PBDEs were detected only in sediments and show relatively low concentrations compared to similar lagoon environments. Regarding the sediment quality guidelines, Cd, Cu and PCBs in both lagoons did not exceed any Probable Effect Concentration (PEC).

Keywords

Mediterranean lagoons Environmental quality Water Sediment Cu Cd PBDEs PCBs 

Notes

Acknowledgments

This collaborative work was funded by the project ANR CIEL CESA 00501 2008. We would like to thank Jacques Carbone, Stéphane Kunesch, Philippe Lenfant, Gilles Saragoni, Gaël Simon and Christine Sotin for their technical assistance during sample collection, Gérard Jeanty for analytic assistance and T. Noguer for the final relecture of this paper. We thank Valérie Derolez from Ifremer for supplying water quality data from the Lagoon Monitoring Network (Réseau de Suivi Lagunaire, RSL). The authors are grateful to anonymous reviewers for their relevant comments on the paper.

References

  1. Abdallah MAM (2011) Ecological risk assessment of heavy metals from surficial sediments of a shallow coastal lagoon, Egypt. Environ Technol 32(9):979–988CrossRefGoogle Scholar
  2. Acou A, Lefebvre F, Contournet P, Poizat G, Panfili J, Crivelli AJ (2003) Silvering of female eels (Anguilla anguilla) in two sub-populations of the Rhône Delta. Bulletin Français de la Pêche et de la Pisciculture 368:55–68CrossRefGoogle Scholar
  3. Apitz SE, Barbanti A, Bernstein AG, Bocci M, Delaney E, Montobbio L (2007) The assessment of sediment screening risk in Venice Lagoon and other coastal areas using international sediment quality guidelines. J Soils Sediments 7(5):326–341CrossRefGoogle Scholar
  4. Aubry FB, Acri F (2004) Phytoplankton seasonality and exchange at the inlets of the lagoon of Venise (July 2001-June 2002). J Marine Syst 51:65–76CrossRefGoogle Scholar
  5. Barnes H, Blackstock J (1973) Estimation of lipids in marine animals and tissue: detailed investigations of the sulfovanilin method for total lipids. J Exp Mar Biol Ecol 12:103–118CrossRefGoogle Scholar
  6. Belpaire C, Goemans G (2007) The European eel Anguilla anguilla, a rapporteur of the chemical status for the water framework directive? Vie Milieu-Life and Environment 57:235–252Google Scholar
  7. Bena G, Picot B (1992) Trace-metals in Thau lagoon sediments (French Mediterranean coast). Oceanol Acta 14(5):459–472Google Scholar
  8. Bhasvar S, Gandhi N, Gewurtz S, Tomy G (2008) Fate of PBDEs in juveniles Lake Trout estimated using a dynamic multichemical fish model. Environ Sci Technol 42:3724–3731CrossRefGoogle Scholar
  9. Boke OH, Seda TZ (2010) Assessment of various parameters of metal biology in marine microalgae Phaeodactylum Tricornutum and Dunaliella Tertiolecta. Fresen Environ Bull 19(12A):2981–2986Google Scholar
  10. Boutière H (1974) L'étang de Bages-Sigean modèle de lagune méditerranéenne. Vie Milieu 24(1B):23–58Google Scholar
  11. Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries. Environ Pollut 76(2):89–131CrossRefGoogle Scholar
  12. Buscail R, Cauwet G, Cambon JP (1984) Apports des éléments métalliques par les fleuves côtiers méditerranéens : importance du piègeage dans les étangs et devant les embouchures (littoral du Languedoc-Roussillon- Golfe du Lion-France). Rapport Comm. Int. Mer Médit. VII Journées d’Etudes sur les Pollutions 31–43Google Scholar
  13. Buscail R, Vouvé F, Lecomte-Finiger R, Lenfant Ph, Pastor J, Abdullah M, Certain R (2009) Entre terre et mer : la lagune de Salses - Leucate, un “lac marin”. In: Monaco A, Ludwig W, Provansal M, Picon B (eds) Le Golfe du Lion. Un Observatoire de l’environnement en Méditerranée. Quae, Versailles, pp 167–182Google Scholar
  14. Carlier A, Riera P, Amouroux J-M, Bodiou J-Y, Desmalades M, Grémare A (2008) Food web structure of two Mediterranean lagoons under varying degree of eutrophication. J Sea Res 60:287–298CrossRefGoogle Scholar
  15. Casas S, Gonzalez JL, Andral B, Cossa D (2008) Relation between metal concentration in water and metal content of marine mussels (Mytilus galloprovincialis): impact of physiology. Environ Toxicol Chem 27:1543–1552CrossRefGoogle Scholar
  16. Castel J, Caumette P, Herbert R (1996) Eutrophication gradients in coastal lagoons as exemplified by the Bassin d'Arcachon and the Etang du Prévost. Hydrobiologia 329:ix–xxviiiCrossRefGoogle Scholar
  17. Castro-Jiménez J, Deviller G, Ghiani M, Loos R, Mariani G, Skejo H, Umlauf G, Wollgast J, Laugier T, Héas-Moisan K, Léauté F, Munschy C, Tixier C, Tronczyński J (2008) PCDD/F and PCB multi-media ambient concentrations, congener patterns and occurrence in a Mediterranean coastal lagoon (Etang de Thau, France). Environ Pollut 156:123–135CrossRefGoogle Scholar
  18. Cauwet G, Gadel F, De Souza Sierra MM, Donard O, Ewald M (1990) Contribution of the Rhône river to organic inputs to the northwestern Mediterranean sea. Cont Shelf Res 10(9–11):1025–1037CrossRefGoogle Scholar
  19. Chikhaoui MA, Hlaili AS, Mabrouk HH (2008) Réponses saisonnières du phytoplancton aux rapports d’enrichissements N : Si : P dans la lagune de Bizerte (Sud-Ouest de la Méditerranée). Comptes Rendus Biologie 331:389–408CrossRefGoogle Scholar
  20. Claisse D, Boutier B, Aranda A (1990) La contamination de l’Etang de Bages-Sigean par le cadmium. Première évaluation. Rapport Ifremer, DRA 90-07-MR, p 17Google Scholar
  21. Collos Y, Bec B, Jauzein C, Abadi E, Laugier T, Lautier J, Pastoureaud A, Souchu P, Vaquer A (2009) Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau lagoon, southern France. J Sea Res 61:68–75CrossRefGoogle Scholar
  22. Comans RNJ, Van Dijk CPJ (1988) Role of complexation processes in cadmium mobilization during estuarine mixing. Nature 336:151–154CrossRefGoogle Scholar
  23. Conesa HM, Jiménez-Cárceles F (2007) The Mar Menor lagoon (SE Spain): A singular natural ecosystem threatened by human activities. Mar Pollut Bull 54:839–849CrossRefGoogle Scholar
  24. Dai M, Martin JM, Cauwet G (2000) Significance of colloids in the biogeochemical cycling of organic carbon. In: Lasserre P, Marzollo A (eds) The Venice lagoon ecosystem: inputs and interactions between land and sea. The Parthenon Publishing Group, Paris, pp 23–45Google Scholar
  25. Daoudi M (2011) Peuplements phytoplanctoniques, risques toxiques et qualité de l'eau de deux lagures méditerranéennes: lagune de Nador (Maroc) et lagune de Canet – St Nazaire (France). PhD Thesis, Perpignan Via-Domitia University, France, p 235Google Scholar
  26. Daoudi M, Serve L, Rharbi N, El Madani F, Vouvé F (2012) Phytoplankton distribution in the Nador lagoon (Morocco) and possible risks for harmful algal blooms. Transit Waters Bull 6(1):4–19Google Scholar
  27. Delgadillo - Hinojosa F, Zirino A, Nasci C (2008) Cooper complexation capacity in surface waters of the Venice Lagoon. Mar Environ Res 66(4):404–411CrossRefGoogle Scholar
  28. Dinn PM, Johannessen SC, Ross PS, Macdonald RW, Whiticar MJ, Lowe CJ, van Roodselaar A (2012) PBDE and PCB accumulation in benthos near marine wastewater outfalls: The role of sediment organic carbon. Environ Pollut 171:241–248CrossRefGoogle Scholar
  29. Dufour A (2009) Tableau de bord - Année 2009. Contrat pour les étangs du Narbonnais. Parc Naturel Régional de la Narbonnaise en Méditerranée, p 43Google Scholar
  30. Erickson RJ, Benoit DA, Mattson VR, Nelson HP Jr, Leonard EN (1996) The effects of water chemistry on the toxicity of copper to fathead minnows. Environ Toxicol Chem 15:181–193CrossRefGoogle Scholar
  31. Foster WJ, Armynot du Châtelet E, Rogerson M (2012) Testing benthic foraminiferal distribution as a contemporary quantitative approach to biomonitoring estuarine heavy metal pollution. Mar Pollut Bull 64:1039–1048CrossRefGoogle Scholar
  32. Galgani F, Senia J, Guillou JL, Laugier T, Munaron D, Andral B, Guillaume B, Coulet E, Boissery P, Brun L, Bertrandy MC (2009) Assessment of the Environmental quality of french continental Mediterranean lagoons with oyster embryo bioassay. Arch Environ Con Tox 57:540–551CrossRefGoogle Scholar
  33. García-Pintado J, Martínez-Mena M, Barberà GG, Albaladejo J, Castillo VM (2007) Anthropogenic nutrient sources and loads from a Mediterrranean catchment into a coastal lagoon: Mar Menor, Spain. Sci Total Environ 273:220–239CrossRefGoogle Scholar
  34. Geeraerts C, Belpaire C (2010) The effects of contaminants in European eel: a review. Ecotoxicology 19(2):239–266CrossRefGoogle Scholar
  35. HACH (2004) DR/890 Datalogging colorimeter Handbook. Hach Company World headquarters, Loveland, p 616Google Scholar
  36. Hedges JI, Oades JM (1997) Comparative organic geochemistries of soils and marine sediments. Org Geochem 27:319–361CrossRefGoogle Scholar
  37. Huc AY (1980) Origin and formation of organic matter in recent sediments and its relation to kerogen. In: Durand (ed) Kerogen. Technip, Paris, pp 445–474Google Scholar
  38. Hung CC, Gong GC, Ko FC, Chen HY, Hsu ML, Wu JM, Peng SC, Nan FH, Yeager KM, Santschi PH (2010) Relationships between persistent organic pollutants and carbonaceous materials in aquatic sediments of Taiwan. Mar Pollut Bull 60(7):1010–1017CrossRefGoogle Scholar
  39. Ibrahim Korfali S, Davies BE (2004) Speciation of metals in sediment and water in a river underlain by limestone: role of carbonate species for purification capacity of rivers. Adv Environ Res 8(3–4):599–612CrossRefGoogle Scholar
  40. IFREMER (2002) Réseau du suivi Lagunaire du Languedoc-Roussillon : Bilan des résultats 2001. Rapport RSL-02/2002. Étang de Canet-St-Nazaire, p 36Google Scholar
  41. IFREMER (2003) Réseau du suivi Lagunaire du Languedoc-Roussillon: Bilan des résultats 2002. Rapport RSL-03/2003, 360 pGoogle Scholar
  42. IFREMER (2006) Réseau du suivi Lagunaire du Languedoc-Roussillon: Bilan des résultats 2005. Rapport RSL-06/2006, 450 pGoogle Scholar
  43. IFREMER (2008) Réseau du suivi Lagunaire du Languedoc-Roussillon : Bilan des résultats 2007. Rapport RSL-08/2008, p 363Google Scholar
  44. IFREMER (2009) Réseau du suivi Lagunaire du Languedoc-Roussillon: Bilan des résultats 2008. Rapport RSL-09/2009, p 349Google Scholar
  45. IFREMER (2010) Réseau du suivi Lagunaire du Languedoc-Roussillon: Bilan des résultats 2009. Rapport RSL-10/2010, p 321Google Scholar
  46. IFREMER (2012) Réseau du suivi Lagunaire du Languedoc-Roussillon: Bilan des résultats 2011. Rapport RSL-12/2012, p 277Google Scholar
  47. INSEE (2010) Saison d’été 2009 : 28 millions de nuitées dans l’ensemble des hébergements collectifs touristiques du Languedoc-Roussillon. Rapport N°5, p 9Google Scholar
  48. Jiang L, Luo S, Fan X, Yang Z, Guo R (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energ 88:3336–3341CrossRefGoogle Scholar
  49. Justić D, Rabalais NN, Turner E, Dortch Q (1995) Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuar Coast Shelf Sci 40(3):339–356CrossRefGoogle Scholar
  50. Kanzari F, Syakti AD, Asia L, Malleret L, Mille G, Jamoussi B, Abderrabba M, Doumenq P (2012) Aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine, and organophosphorous pesticides in surface sediments from the Arc river and the Berre Lagoon, France. Environ Sci Pollut Res 19(2):559–576CrossRefGoogle Scholar
  51. Kolditz C-I (2008) Déterminisme nutritionnel et génétique de la teneur en lipides musculaires chez la truite Arc-en-ciel (Oncorhynchus mykiss) : Étude par analyse de l'expression de gènes candidats, du protéome et du transcriptome, du foie et du muscle. PhD Thesis, Bordeaux 1 University, France, p 263Google Scholar
  52. Labadie P, Alliot F, Bourges C, Desportes A, Chevreuil M (2010) Determination of polybrominateddiphenyl ethers in fish tissues by matrix solid-phase dispersion and gas chromatography coupled to triple quadrupole mass spectrometry : case study on European eel (Anguilla anguilla) from Mediterranean costal lagoons. Anal Chim Acta 675:97–105CrossRefGoogle Scholar
  53. Lacaze JC (1996) L'eutrophisation des eaux marines et continentales, Ellipses (eds), Paris, p 191Google Scholar
  54. Law R, Herzke D, Harrad S, Morris S, Bersuder P, Allchin CR (2008) Levels and trends of HBCD and BDEs in the European and Asian environments, with some information for other BFRs. Chemosphere 73:223–241CrossRefGoogle Scholar
  55. Lecomte-Finiger R (1983a) Régime alimentaire des civelles et anguillettes (Anguilla anguilla) dans trois étangs saumâtres du Roussillon. Bull Ecol 14(4):297–306Google Scholar
  56. Lecomte-Finiger R (1983b) Contribution à la connaissance de l’écobiologie de l’anguille des milieux lagunaires méditerranéens du Golfe du Lion, Narbonais, Roussillon. PhD Thesis, Perpignan University, France, p 203Google Scholar
  57. Long ER, MacDonald DD (1998) Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Hum Ecol Risk Assess 4(5):1019–1039CrossRefGoogle Scholar
  58. López-Sánchez JF, Rubio R, Samitier C, Rauret G (1996) Trace metal partitioning in marine sediments and sludges deposited off the coast of Barcelona (Spain). Water Res 30(1):153–159CrossRefGoogle Scholar
  59. Lorenzen CJ (1966) A method for the continuous measurements of in-vivo chlorophyll concentration. Deep-Sea Res 13:223–227Google Scholar
  60. Manini E, Fiordelmondo C, Gambi C, Pusceddu A, Danovaro R (2003) Benthic microbial loop functioning in coastal lagoons : a comparative approach. Oceanol Acta 26:27–38CrossRefGoogle Scholar
  61. MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Con Tox 39(1):20–31CrossRefGoogle Scholar
  62. Maes GE, Raeymaekers JAM, Pampoulie C, Seynaeve A, Goemans G, Belpaire C, Volckaert FAM (2005) The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotoxicology: Relationship between heavy metal bioaccumulation, condition and genetic variability. Aquatic Toxicol 73:99–114CrossRefGoogle Scholar
  63. Mallawa A (1987) Dynamique des stocks exploités et halieutiques de l'anguille européenne (Anguilla anguilla L. 1758) des lagunes du Narbonnais et du Roussillon (Bages-Sigean et Canet-Saint-Nazaire), Golfe du Lion. PhD Thesis, Perpignan University, France p 406Google Scholar
  64. MEDAD (2007) PCB ou Polychlorobiphényles : l'état des lieux, le plan national d'actions, octobre 2007, p 11Google Scholar
  65. Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry : an overwiew of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900CrossRefGoogle Scholar
  66. Ministerio ambiente (1993) Protocollo recante criteri di sicurezza ambientale per gli interventi di escavazione, trasporto e reimpiego dei fanghi estratti dai canali di Venezia – 8 Aprile 1993. Venice, ItalyGoogle Scholar
  67. Monoley CL, Field JG (1991) Modelling carbon and nitrogen flow in a microbial plankton community. In: Reid PC, Turley CM, Burkill PH (eds) Protozoa and their role in marine processes. Springer-Verlag, Berlin, pp 443–473Google Scholar
  68. Müller P (1977) CN ratios in Pacific deep-sea sediments: Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochim Cosmochim Ac 41(6):765–776CrossRefGoogle Scholar
  69. Neveux J (1976) Dosage de la chlorophylle a et de la phéophytine a par fluorimétrie. Annales de l’Institut Océanographique, Paris 52:165–174Google Scholar
  70. Pacifico R, Adamo P, Cremisini C, Spaziani F, Ferrara L (2007) A geochemical analytical approach for the evaluation of heavy metal distribution in lagoon sediments. J Soils Sediments 7(5):313–325CrossRefGoogle Scholar
  71. Persic A, Roche H, Ramade F (2004) Stable carbon and nitrogen isotope quantitative structural assessment of dominant species from the Vaccarès Lagoon trophic web (Camargue Biosphere Reserve, France). Estuar Coast Shelf S 60:261–272CrossRefGoogle Scholar
  72. Pierron F, Baudrimont M, Lucia M, Durrieu G, Massabuau JC, Elie P (2008) Cadmium uptake by European eel: Trophic transfer in field and experimental investigations. Ecotoxicol Environ Saf 70(1):10–19CrossRefGoogle Scholar
  73. Prathima Devi M, Venkata Subhash G, Venkata Mohan S (2011) Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: effect of nutrient supplementation. Renew Energ 43:276–283CrossRefGoogle Scholar
  74. Razincovas A, Gasiūnaitė Z, Viaroli P, Zaldívar JM (2008) Preface: European lagoons need for further comparison across spatial and temporal scales. Hydrobiologia 611:1–4CrossRefGoogle Scholar
  75. Richards RG, Mullins BJ (2013) Using microalgae for combined lipid production and heavy metals removal from leachate. Ecol model 249:59–67Google Scholar
  76. Salvado JA, Grimalt JO, Lopez JF, Durrieu de Madron X, Heussner S, Canals M (2012) Transformation of PBDE mixture during sediment transport and resuspension in marine environments (Gulf of Lion, NW Mediterranean Sea). Environ Pollut 168:87–95CrossRefGoogle Scholar
  77. Santinelli C, Gaspareni GP, Nannicini L, Seritti A (2002) Vertical distribution of dissolved organic carbon (DOC) in Western Mediterranean Sea in relation to hydrological characteristics. Deep-Sea Res 49:2203–2219CrossRefGoogle Scholar
  78. Schulz D, Petrick G, Duinker J (1989) Complete characterization of polychlorinated biphenyl congener in commercial Aroclor and Clophen mixture by multidimensional gas chromatography- electron capture detection. Environ Sci Technol 23:852–859Google Scholar
  79. Souchu P, Bec B, Smith VH, Laugier T, Fiandrino A, Benau L, Orsini V, Collos Y, Vaquer A (2010) Patterns in nutrient limitation and chlorophyll a along anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Can J Fish Aquat Sci 67:743–753CrossRefGoogle Scholar
  80. Specchiulli A, Focardi S, Renzi M, Scirocco T, Cilenti L, Breber P, Bastianoni S (2008) Environmental heterogeneity patterns and assessement of trophic levels in two Mediterranean lagoons: Orbetello and Varano, Italy. Sci Total Environ 402:285–298CrossRefGoogle Scholar
  81. Surija B, Branica M (1995) Distribution of Cd, Pb, Cu and Zn in carbonate sediments from the Krka river estuary obtained by sequential extraction. Sci Total Environ 170(1–2):101–118CrossRefGoogle Scholar
  82. Tahershamsi A, Bakhtiary A, Mousavi A (2009) Effects of seasonal climate change on Chemical Oxygen Demand (COD) concentration in the Anzali Wetland (Iran). 18th World IMACS / MODSIM Congress, Cairns, Australia 13–17 July 2009, pp 2769–2275Google Scholar
  83. Tang D, Warknem KW, Sanstchi PH (2001) Organic complexation of cooper in Galveston Bay waters. Limnol Oceanogr 46(2):321–330CrossRefGoogle Scholar
  84. Teil M-J, Tlili K, Blanchard M, Chevreuil M, Alliot F, Labadie P (2012) Occurrence of polybrominated diphenyls ethers, polychlorinated biphenyls and phtalates in freshwater fish from the Orge river (Ile-de-France). Arch Environ Con Tox 63(1):101–113CrossRefGoogle Scholar
  85. Tlili K, Labadie P, Alliot F, Bourges C, Desportes A, Chevreuil M (2011) Seasonal variations of ambient air concentration and atmospheric bulk/wet deposition of polybrominated diphenyl ethers in downtown Paris (France). Water Air Soil Poll 223(4):1543–1553CrossRefGoogle Scholar
  86. Uluturhan E, Kontas A, Can E (2011) Sediment concentrations of heavy metals in the Homa Lagoon (Eastern Aegean Sea): assessment of contamination and ecological risks. Mar Pollut Bull 62(9):1989–1997CrossRefGoogle Scholar
  87. Van Leeuwen SPJ, Van Cleuvenbergen R, Abalos M, Pasini A-L, Eriksson U, Cleemann M, Hajslova J, de Boer J (2006) New certified and candidate certified reference materials for the analysis of PCBs, PCDD/Fs, OCPs and BFRs in the environment and food. Trend Anal Chem 25(4):397–409CrossRefGoogle Scholar
  88. Viaroli P, Lasserre P, Campostrini P (2007) Lagoons and coastal wetlands. Hydrobiologia 577:1–3CrossRefGoogle Scholar
  89. Villanueva MC, Lalèyè P, Albaret J-J, Laë R, Tito de Morais L, Moreau J (2006) Comparative analysis of trophic structure and interactions of two tropical lagoons. Ecol Model 197:461–477CrossRefGoogle Scholar
  90. Wang ZL, Liu CQ (2003) Distribution and partition behavior of heavy metals between dissolved and acid-soluble fractions along a salinity gradient in the Changjiang Estuary, eastern China. Chem Geol 202(3–4):383–396CrossRefGoogle Scholar
  91. Wenning RJ, Dodge DG (2000) Ecological risk assessment of navigation channel sediment in the Venice Lagoon, Italy. ChemRisk Group. McLaren/Hart. Inc, AlamedaGoogle Scholar
  92. Wilke M (1998) Variabilité des facteurs abiotiques dans les eaux d’une lagune Méditerranéenne, l’étang de Canet (P. –O., France). Vie Milieu 48(3):157–169Google Scholar
  93. Wilke M (2002) Les fluctuations spatio-temporelles des conditions abiotiques dans des lagunes méditerranéennes: importance, origine et incidences du phénomène comme facteur limitant pour les biocénoses lagunaires. PhD Thesis, Ecole Pratique des Hautes Etudes, France p 430Google Scholar
  94. Zumstein J, Buffle J (1989) Circulation of pedogenic and aquagenic organic matter in an eutrophic lake. Water Res 23(2):229–239CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Florence Vouvé
    • 1
    Email author
  • Roselyne Buscail
    • 2
    • 3
  • Dominique Aubert
    • 3
    • 2
  • Pierre Labadie
    • 4
    • 6
  • Marc Chevreuil
    • 4
  • Christophe Canal
    • 1
  • Marion Desmousseaux
    • 1
    • 2
    • 3
  • Fabrice Alliot
    • 4
  • Elsa Amilhat
    • 2
    • 3
  • Elisabeth Faliex
    • 3
    • 2
  • Séverine Paris-Palacios
    • 5
  • Sylvie Biagianti-Risbourg
    • 5
  1. 1.Institut de Modélisation en Géo-Environnement et Santé EA 4218Université de Perpignan Via DomitiaPerpignanFrance
  2. 2.CNRS, CEntre de Formation et de Recherche sur les Environnements Méditerranéens,UMR 5110Université de Perpignan Via DomitiaPerpignanFrance
  3. 3.CEntre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110Université de Perpignan Via DomitiaPerpignanFrance
  4. 4.EPHE-UMR 7619 Sisyphe, Laboratoire Hydrologie et EnvironnementUniversité Pierre et Marie CurieParis Cedex 05France
  5. 5.EA 4689 IAE «Interactions Animal Environnement» Laboratoire d’Ecologie EcotoxicologieUniversité de Reims Champagne-Ardenne, UFR Sciences exactes et naturelles, Moulin de la HousseReims Cedex 2France
  6. 6.CNRS-UMR 5805 EPOC, Equipe LPTC, Université de Bordeaux ITalenceFrance

Personalised recommendations