Environmental Science and Pollution Research

, Volume 21, Issue 23, pp 13302–13314 | Cite as

Toxicity of five antidepressant drugs on embryo–larval development and metamorphosis success in the Pacific oyster, Crassostrea gigas

  • C. Di Poi
  • L. Evariste
  • A. Serpentini
  • M. P. Halm-Lemeille
  • J. M. Lebel
  • K. Costil
Combined effects of Environmental Stressors in the Aquatic Environment


Unlike conventional pollutants, pharmaceutical residues are continuously discharged at low levels (low to mid ng l−1 concentrations), which results in the chronic contamination of non-target organisms, but little is known about the effects of these residues. The purpose of this study was to provide the first assessment of the ecotoxicity of five antidepressants (selective serotonin reuptake inhibitors [SSRIs] fluoxetine and sertraline, tricyclic antidepressants [TCAs] clomipramine and amitriptyline, and serotonin norepinephrine reuptake inhibitor [SNRI] duloxetine) at a wide range of concentrations from 0.1 to 100,000 μg l−1 on two early life stages in the Pacific oyster. The toxicity was quantified in D-shaped larvae after 36 h of exposure, and in 21-day-old pediveliger larvae after 24 h of exposure using the percentage of normal larval development and the metamorphosis rate as endpoints, respectively. The embryotoxicity assays reported that the EC50 values were within the same range of concentrations (67 to 192 μg l−1) for all of the tested molecules. The metamorphosis tests revealed that the antidepressants can be ranked along an increasing severity gradient: clomipramine < amitriptyline < duloxetine ~ fluoxetine. Sertraline appeared to be the less toxic molecule on this endpoint; however, a different concentration range was used. The embryotoxicity test was more sensitive than the metamorphosis bioassay for three of the five molecules tested, but the latter test showed more practical benefits. Overall, the obtained toxicity values were at least 10,000-fold higher than the reported environmental concentrations.


Antidepressants Selective serotonin reuptake inhibitor (SSRI) Serotonin norepinephrine reuptake inhibitor (SNRI) Tricyclic antidepressant (TCA) Crassostrea gigas Embryotoxicity Metamorphosis 



This work is a contribution to the Pharm@Ecotox project funded by the French National Research Agency (ANR, fr: Agence Nationale de la Recherche). The authors gratefully acknowledge the personnel of the SATMAR (Société ATlantique de MARiculture) hatchery (Barfleur, France) for providing pediveliger larvae, and Rebecca Olley for editing the English form.


  1. AFNOR (2009) Bio indicateur de la toxicité potentielle de milieux aqueux. XP T90-382. 19Google Scholar
  2. Akcha F, Spagnol C, Rouxel J (2012) Genotoxicity of diuron and glyphosate in oyster spermatozoa and embryos. Aquat Toxicol 106–107:104–13Google Scholar
  3. Baker SM, Mann R (1994) Feeding ability during settlement and metamorphosis in the oyster Crassostrea virginica (Gmelin, 1791) and the effects of hypoxia on post-settlement ingestion rates. J Exp Mar Biol Ecol 181:239–253CrossRefGoogle Scholar
  4. Beiras R, Widdows J (1995a) Effect of the neurotransmitters dopamine, serotonin and norepinephrine on the ciliary activity of mussel (Mytilus edulis) larvae. Mar Biol 122:597–603CrossRefGoogle Scholar
  5. Beiras R, Widdows J (1995b) Induction of metamorphosis in larvae of the oyster Crassostrea gigas using neuroactive compounds. Mar Biol 123:327–334CrossRefGoogle Scholar
  6. Brooks BW, Chambliss CK, Stanley JK et al (2005) Determination of select antidepressants in fish from an effluent-dominated stream. Environ Toxicol Chem 24:464–469CrossRefGoogle Scholar
  7. Brooks BW, Foran CM, Richards SM et al (2003) Aquatic ecotoxicology of fluoxetine. Toxicol Lett 142:169–183CrossRefGoogle Scholar
  8. Cachot J, Geffard O, Augagneur S et al (2006) Evidence of genotoxicity related to high PAH content of sediments in the upper part of the Seine estuary (Normandy, France). Aquat Toxicol 79:257–267CrossRefGoogle Scholar
  9. Carlsson C, Johansson A-K, Alvan G et al (2006) Are pharmaceuticals potent environmental pollutants? Part I. Environmental risk assessments of selected active pharmaceutical ingredients. Sci Total Environ 364:67–87CrossRefGoogle Scholar
  10. Catapane EJ (1983) Comparative study of the control of lateral ciliary activity in marine bivalves. Comp Biochem Physiol Part C: Comp Pharmacol 75:403–405CrossRefGoogle Scholar
  11. Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194CrossRefGoogle Scholar
  12. Coon SL, Bonar DB (1987) Pharmacological evidence that alpha 1-adrenoceptors mediate metamorphosis of the Pacific oyster, Crassostrea gigas. Neuroscience 23:1169–1174CrossRefGoogle Scholar
  13. Coon SL, Bonar DB, Weiner RM (1985) Induction of settlement and metamorphosis of the pacific oyster, Crassostrea gigas (Thunberg), by l-DOPA and catecholamines. J Exp Mar Biol Ecol 94:211–221CrossRefGoogle Scholar
  14. Crolla RP, Too CK, Pani AK, Nason J (1995) Distribution of serotonin in the sea scallop Placopecten magellanicus. Invert Reprod Dev 28:125–135CrossRefGoogle Scholar
  15. Damiens G, His E, Gnassia-Barelli M et al (2004) Evaluation of biomarkers in oyster larvae in natural and polluted conditions. Comp Biochem Physiol Toxicol Pharmacol CBP 138:121–128CrossRefGoogle Scholar
  16. DrugBank (2012) DrugBank. http://www.drugbank.ca. Accessed 26 June 2013
  17. El-Bassat RA, Touliabah HE, Harisa GI, Sayegh FAQ (2011) Aquatic toxicity of various pharmaceuticals on some isolated plankton species. Int J Med Sci 3:170–180Google Scholar
  18. Fong PP (1998) Zebra mussel spawning is induced in low concentrations of putative serotonin reuptake inhibitors. Biol Bull 194:143–149CrossRefGoogle Scholar
  19. Fong PP, Philbert CM, Roberts BJ (2003) Putative serotonin reuptake inhibitor-induced spawning and parturition in freshwater bivalves is inhibited by mammalian 5-HT2 receptor antagonists. J Exp Zool Part A Comp Exp Biol 298:67–72CrossRefGoogle Scholar
  20. García-Lavandeira M, Silva A, Abad M et al (2005) Effects of GABA and epinephrine on the settlement and metamorphosis of the larvae of four species of bivalve molluscs. J Exp Mar Biol Ecol 316:149–156CrossRefGoogle Scholar
  21. Geffard O, Budzinski H, His E (2002) The effects of elutriates from PAH and heavy metal polluted sediments on Crassostrea gigas (Thunberg) embryogenesis, larval growth and bio-accumulation by the larvae of pollutants from sedimentary origin. Ecotoxicology 11:403–416CrossRefGoogle Scholar
  22. Gibbonsa M, Castagna M (1984) Serotonin as an inducer of spawning in six bivalve species. Aquaculture 40:189–191CrossRefGoogle Scholar
  23. Gilbert SF (2003) Developmental biology. Sinauer AsGoogle Scholar
  24. Hardege JD, Duncan J, Ram JL (1997) Tricyclic antidepressants suppress spawning and fertilization in the zebra mussel, Dreissena polymorpha. Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol 118:59–64CrossRefGoogle Scholar
  25. Herkovits J, Cardellini P, Pavanati C, Perez-Coll CS (1997) Susceptibility of early life stages of Xenopus laevis to cadmium. Environ Toxicol Chem 16:312–316CrossRefGoogle Scholar
  26. His E, Beiras R, Silhouette C (1997) Research note a simplification the bivalve embryogenesis and larval development bioassay method for water quality assessment. Water Res 31:351–355CrossRefGoogle Scholar
  27. His E, Heyvang I, Geffard O et al (1999) A comparison between oyster (Crassostrea gigas) and sea urchin (Paracentrotus lividus) larval bioassays for toxicological studies. Water Res 33:1706–1718CrossRefGoogle Scholar
  28. Hutchinson TH, Solbé J, Kloepper-Sams PJ (1998) Analysis of the ecetoc aquatic toxicity (EAT) database III — comparative toxicity of chemical substances to different life stages of aquatic organisms. Chemosphere 36:129–142CrossRefGoogle Scholar
  29. Kolpin DW, Furlong ET, Meyer MT et al (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  30. Kümmerer K (2001) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources — a review. Chemosphere 45:957–969CrossRefGoogle Scholar
  31. Lacoste A, Malham SK, Cueff A et al (2001a) Evidence for a form of adrenergic response to stress in the mollusc Crassostrea gigas. J Exp Biol 204:1247–1255Google Scholar
  32. Lacoste A, Malham SK, Cueff A, Poulet SA (2001b) Stress-induced catecholamine changes in the hemolymph of the oyster Crassostrea gigas. Gen Comp Endocrinol 122:181–188CrossRefGoogle Scholar
  33. Libralato G, Losso C, Arizzi Novelli A et al (2008) Ecotoxicological evaluation of industrial port of Venice (Italy) sediment samples after a decontamination treatment. Environ Poll 156:644–650CrossRefGoogle Scholar
  34. Lyons BP, Pascoe CK, McFadzen IRB (2002) Phototoxicity of pyrene and benzo[a]pyrene to embryo–larval stages of the Pacific oyster Crassostrea gigas. Mar Environ Res 54:627–631CrossRefGoogle Scholar
  35. Mai H, Cachot J, Brune J et al (2012) Embryotoxic and genotoxic effects of heavy metals and pesticides on early life stages of Pacific oyster (Crassostrea gigas). Mar Poll Bull 64:2663–2670CrossRefGoogle Scholar
  36. Martinez G, Rivera A (1994) Role of monoamines in the reproductive process of Argopecten pupuratus. Invert Reprod Dev 25:167–174CrossRefGoogle Scholar
  37. Metcalfe CD, Chu S, Judt C et al (2010) Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ Toxicol Chem 29:79–89CrossRefGoogle Scholar
  38. Mohammeda A, Halfhidea T, Elias-Samlalsingha N (2009) Comparative sensitivity of three life stages of the tropical mysid, Metamysidopsis insularis to six toxicants. Toxicol Environ Chem 91:1331–1337CrossRefGoogle Scholar
  39. Mottier A, Kientz-Bouchart V, Serpentini A et al (2013) Effects of glyphosate-based herbicides on embryo–larval development and metamorphosis in the Pacific oyster, Crassostrea gigas. Aquat Toxicol 128–129:67–78CrossRefGoogle Scholar
  40. Munaron D, Tapie N, Budzinski H et al (2012) Pharmaceuticals, alkylphenols and pesticides in Mediterranean coastal waters: Results from a pilot survey using passive samplers. Estuar Coast Shelf Sci 114:82–92CrossRefGoogle Scholar
  41. Olié J, Omari FEL, Spadone C, Lépine J (2002) Résultats d'une enquête sur l'usage des antidépresseurs en population générale française. L'Encéphale 28:411–417Google Scholar
  42. Osada M, Nomura T (1989) Seasonal variations of catecholamine levels in the tissues of the Japanese oyster, Crassostrea gigas. Comp Biochem Physiol Part C Comp Pharmacol 93:171–173CrossRefGoogle Scholar
  43. Pélissolo A, Boyer P, Lépine JP, Bisserbe JC (1996) Epidemiology of the use of anxiolytic and hypnotic drugs in France and in the world. L'Encéphale 22:187–196Google Scholar
  44. Péry ARR, Gust M, Vollat B et al (2008) Fluoxetine effects assessment on the life cycle of aquatic invertebrates. Chemosphere 73:300–304CrossRefGoogle Scholar
  45. Poirier L, Quiniou F, Ruiz N et al (2007) Toxicity assessment of peptaibols and contaminated sediments on Crassostrea gigas embryos. Aquat Toxicol 83:254–262CrossRefGoogle Scholar
  46. Quinn B, Gagné F, Blaise C (2008) The effects of pharmaceuticals on the regeneration of the cnidarian, Hydra attenuata. Sci Tot Environ 402:62–69CrossRefGoogle Scholar
  47. Rainey MM, Korostyshevsky D, Lee S, Perlstein EO (2010) The antidepressant sertraline targets intracellular vesiculogenic membranes in yeast. Genetics 185:1221–1233CrossRefGoogle Scholar
  48. Royer J, Ropert M, Costil K et al (2007) Spatio-temporal changes in mortality, growth and condition of the Pacific oyster, Crassostrea gigas, in Normandy (France). J Shellfish Res 26:973–984CrossRefGoogle Scholar
  49. Samain JF, Dégremont L, Soletchnik P et al (2007) Genetically based resistance to summer mortality in the Pacific oyster (Crassostrea gigas) and its relationship with physiological, immunological characteristics and infection processes. Aquaculture 268:227–243CrossRefGoogle Scholar
  50. Satuito CG, Natoyama K, Yamazaki M et al (1999) Induction of metamorphosis in the pediveliger larvae of the mussel Mytilus galloprovincialis by neuroactive compounds. Fish Sci 65:384–389Google Scholar
  51. Schnitzler JG, Thomé JP, Lepage M, Das K (2011) Organochlorine pesticides, polychlorinated biphenyls and trace elements in wild European sea bass (Dicentrarchus labrax) off European estuaries. Sci Tot Environ 409:3680–3686CrossRefGoogle Scholar
  52. Soletchnik P, Ropert M, Mazurié J et al (2007) Relationships between oyster mortality patterns and environmental data from monitoring databases along the coasts of France. Aquaculture 271:384–400CrossRefGoogle Scholar
  53. Stronkhorst J, Ciarelli S, Schipper CA et al (2004) Inter-laboratory comparison of five marine bioassays for evaluating the toxicity of dredged material. Aquat Ecosyst Health Manag Soc 7:147–159CrossRefGoogle Scholar
  54. Togola A, Budzinski H (2008) Multu-residue analysis of pharmaceutical compounds in aqueous samples. J Chromatogr A 1177:150–158CrossRefGoogle Scholar
  55. Vasskog T, Berger U, Samuelsen P et al (2006) Selective serotonin reuptake inhibitors in sewage influents and effluents from Tromsø, Norway. J Chromatogr A 1115:187–195CrossRefGoogle Scholar
  56. Vindimian E (2012) MSExcel Macro Regtox.7.0.6 Freely available from Eric Vindimian. IRSTEA, FranceGoogle Scholar
  57. Wessel N, Rousseau S, Caisey X et al (2007) Investigating the relationship between embryotoxic and genotoxic effects of benzo[a]pyrene, 17alpha-ethinylestradiol and endosulfan on Crassostrea gigas embryos. Aquat Toxicol 85:133–142CrossRefGoogle Scholar
  58. Wong DT, Bymaster FP, Engleman EA (1995) Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci 57:411–441CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Di Poi
    • 1
    • 2
    • 3
  • L. Evariste
    • 1
    • 2
  • A. Serpentini
    • 1
    • 2
  • M. P. Halm-Lemeille
    • 1
    • 4
  • J. M. Lebel
    • 1
    • 2
  • K. Costil
    • 1
    • 2
  1. 1.Normandie Université, Esplanade de la PaixCaen cedex 5France
  2. 2.CNRS INEE, FRE3484 BioMEACaen cedex 5France
  3. 3.GMPc EA 4259Caen cedex 5France
  4. 4.CERMN, UPRES EA4258 FR CNRS 3038 INC3MCaen cedex 5France

Personalised recommendations