Environmental Science and Pollution Research

, Volume 21, Issue 11, pp 6952–6963 | Cite as

Modelling remediation scenarios in historical mining catchments

  • Javier G. P. GamarraEmail author
  • Paul A. BrewerEmail author
  • Mark G. Macklin
  • Katherine Martin
Using microbes for the regulation of heavy metal mobility at ecosystem and landscape scale


Local remediation measures, particularly those undertaken in historical mining areas, can often be ineffective or even deleterious because erosion and sedimentation processes operate at spatial scales beyond those typically used in point-source remediation. Based on realistic simulations of a hybrid landscape evolution model combined with stochastic rainfall generation, we demonstrate that similar remediation strategies may result in differing effects across three contrasting European catchments depending on their topographic and hydrologic regimes. Based on these results, we propose a conceptual model of catchment-scale remediation effectiveness based on three basic catchment characteristics: the degree of contaminant source coupling, the ratio of contaminated to non-contaminated sediment delivery, and the frequency of sediment transport events.


CAESAR landscape evolution model TRACER Mine remediation Stochastic rainfall simulation Sediment-associated contaminant dispersal 



The authors are grateful to G. de Giudici and V. Iordache for the logistic support in Sardinia and Romania. Two anonymous referees also provided advice. The research was funded by the EU FP7 UMBRELLA project, Aberystwyth University, and the Centre for Catchment and Coastal Research. Thanks also to E. Kothe and G. Büchel for the organization and support provided to the UMBRELLA project, as well as the rest of European participants.


  1. Abrahams PW, Steigmeyer J (2003) Soil ingestion by sheep grazing the metal enriched floodplain soils of mid-Wales. Environ Geochem Health 25:17–24. doi: 10.1023/A:1021217402950 CrossRefGoogle Scholar
  2. Anton A, Rékási M, Uzinger N, Széplábi G, Makó A (2012) Modelling the potential effects of the Hungarian red mud disaster on soil properties. Water Air Soil Pollut 223:5175–5188. doi: 10.1007/s11270-012-1269-3 CrossRefGoogle Scholar
  3. Arefi H, Reinartz P (2011) Accuracy enhancement of ASTER Global Digital Elevation models using ICESat data. Remote Sens 3:1323–1343. doi: 10.3390/rs3071323 CrossRefGoogle Scholar
  4. Bick DE (1978) The old metal mines of mid Wales. The Pound HouseGoogle Scholar
  5. Bick DE (1996) Frongoch lead & zinc mine, British mining 30. The Northern Mine Research Society, Keighley, 89 ppGoogle Scholar
  6. Bird G, Brewer PA, Macklin MG, Serban M, Balteanu D, Driga B, Zaharia S (2008) River system recovery following the Novaţ-Roşu tailings dam failure, Maramureş County, Romania. Appl Geochem 23:3498–3518. doi: 10.1016/j.apgeochem.2008.08.010 CrossRefGoogle Scholar
  7. Blanchard SD, Rogan J, Woodcock DW (2010) Geomorphic change analysis using ASTER and SRTM Digital Elevation Models in Central Massachusetts, USA. GIScience Remote Sens 47:1–24. doi: 10.2747/1548-1603.47.1.1 CrossRefGoogle Scholar
  8. Carlon C, Pizzol L, Critto A, Marcomini A (2008) A spatial risk assessment methodology to support the remediation of contaminated land. Environ Int 34:397–411. doi: 10.1016/j.envint.2007.09.009 CrossRefGoogle Scholar
  9. Coulthard TJ (2001) Landscape evolution models: a software review. Hydrol Process 15:165–173. doi: 10.1002/hyp.426 CrossRefGoogle Scholar
  10. Coulthard TJ, Macklin MG (2003) Modeling long-term contamination in river systems from historical metal mining. Geology 31:451–454. doi: 10.1130/0091-7613(2003)031<0451:MLCIRS>2.0.CO;2 CrossRefGoogle Scholar
  11. Coulthard TJ, Kirkby MJ, Macklin MG (2000) Modelling geomorphic response to environmental change in an upland catchment. Hydrol Process 14:2031–2045. doi: 10.1002/1099-1085(20000815/30)14:11/12<2031::AID-HYP53>3.0.CO;2-G CrossRefGoogle Scholar
  12. Coulthard TJ, Ramirez J, Fowler HJ, Glenis V (2012) Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on drainage basin sediment yield. Hydrol Earth Syst Sci 16:4401–4416. doi: 10.5194/hess-16-4401-2012 CrossRefGoogle Scholar
  13. Dennis IA, Macklin MG, Coulthard TJ, Brewer PA (2003) The impact of the October-November 2000 floods on contaminant metal dispersal in the River Swale catchment, North Yorkshire, UK. Hydrol Process 17:1641–1657. doi: 10.1002/hyp.1206 CrossRefGoogle Scholar
  14. Ellis JB (1995) Integrated approaches for achieving sustainable development of urban storm drainage. Water Sci Technol 32:1–6. doi: 10.1016/0273-1223(95)00531-Q CrossRefGoogle Scholar
  15. Hancock GR, Lowry JBB, Coulthard TJ, Evans KG, Moliere DR (2010) A catchment scale evaluation of the SIBERIA and CAESAR landscape evolution models. Earth Surf Proc Land 35:863–875. doi: 10.1002/esp.1863 CrossRefGoogle Scholar
  16. Hooke R, Jeeves TA (1961) “Direct search” solution of numerical and statistical problems. J Assoc Comput Mach 8:212–229. doi: 10.1145/321062.321069 CrossRefGoogle Scholar
  17. Hudson-Edwards KA, Macklin MG, Jamieson HE, Brewer PA, Coulthard TJ, Howard AJ, Turner JN (2003) The impact of tailings dam spills and clean-up operations on sediment and water quality in river systems: the Ríos Agrio-Guadiamar, Aznalcóllar, Spain. Appl Geochem 18:221–239. doi: 10.1016/S0883-2927(02)00122-1 CrossRefGoogle Scholar
  18. Koutsoyiannis D, Onof C (2001) Rainfall disaggregation using adjusting procedures on a Poisson cluster model. J Hydrol 246:109–122. doi: 10.1016/S0022-1694(01)00363-8 CrossRefGoogle Scholar
  19. Lewin J, Macklin MG (1987) Metal mining and floodplain sedimentation in Britain. Int Geomorphol 1:1009–1027Google Scholar
  20. Macklin MG, Brewer PA, Balteanu D, Coulthard TJ, Driga B, Howard AJ, Zaharia S (2003) The long term fate and environmental significance of metals released by the January and March 2000 mining tailings dam failures in Maramureş County, upper Tisa Basin, Romania. Appl Geochem 18:241–257. doi: 10.1016/S0883-2927(02)00123-3 CrossRefGoogle Scholar
  21. Macklin MG, Brewer PA, Hudson-Edwards KA, Bird G, Coulthard TJ, Dennis IA, Lechler PJ, Miller JR, Turner JN (2006) A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology 79:423–447. doi: 10.1016/j.geomorph.2006.06.024 CrossRefGoogle Scholar
  22. MATLAB and Global Optimization Toolbox Release (2009) The MathWorks, Inc., Natick, Massachusetts, United StatesGoogle Scholar
  23. Meharg AA, Osborn D, Pain DJ, Sánchez A, Naveso MA (1999) Contamination of Doñana food-chains after the Aznalcóllar mine disaster. Environ Pollut 105:387–390. doi: 10.1016/S0269-7491(99)00033-0 CrossRefGoogle Scholar
  24. Miller JR, Hudson-Edwards KA, Lechler PJ, Preston D, Macklin MG (2004) Heavy metal contamination of water, soil and produce within riverine communities of the Rio Pilcomayo, Bolivia. Sci Total Environ 30:189–209. doi: 10.1016/j.scitotenv.2003.08.011 CrossRefGoogle Scholar
  25. Nathanial P, McCaffrey C, Ashmore M, Cheng Y, Gillet A, Ogden R, Scott D (2009) The LQM/CIEH generic assessment criteria for human health risk assessment (Second Edition). Pub. Land Quality ManagementGoogle Scholar
  26. Nikolakopoulos KG, Kamartakis EK, Chrysoulakis N (2006) SRTM vs. ASTER elevation products. Comparison for two regions in Crete, Greece. Int J Remote Sens 27:4819–4838. doi: 10.1080/01431160600835853 CrossRefGoogle Scholar
  27. Progemisa (2002) The mines from Montevecchio and Ingurtosu Gennamari. Progetto Montevecchio-Ingurtosu. RAS (Intesa di Programma EMSA-Comunità Montana n° 18-Commune di Arbus-Commune di Guspini) (in Italian)Google Scholar
  28. Rodriguez-Iturbe I, Cox DR, Isham V (1988) A point process model for rainfall: further developments. Proc R Soc Lond A 417:283–298. doi: 10.1098/rspa.1988.0061 CrossRefGoogle Scholar
  29. Smith KM, Abrahams PW, Dagleish MP, Steigmayer J (2009) The intake of lead and associated metals by sheep grazing metal-contaminated floodplain pastures of mid-Wales, UK: I Soil ingestion, soil-metal partitioning and potential availability to pasture herbage and livestock. Sci Total Environ 407:3731–3739. doi: 10.1016/j.scitotenv.2009.02.032 CrossRefGoogle Scholar
  30. Smith KM, Dagleish MP, Abrahams PW (2010) The intake of lead and associated metals by sheep grazing mining-contaminated floodplains pastures in mid-Wales, UK: II. Metal concentrations in blood and wool. Sci Total Environ 408:1035–1042. doi: 10.1016/j.scitotenv.2009.10.023 CrossRefGoogle Scholar
  31. Turner JN, Brewer PA, Macklin MG (2008) Fluvial-controlled metal and as mobilisation, dispersal and storage on the Río Guadiamar, SW Spain and its implications for long-term contamination fluxes to the Doňana wetlands. Sci Total Environ 394:144–161. doi: 10.1016/j.scitotenv.2007.12.021 CrossRefGoogle Scholar
  32. Vanhaute WJ, Vandenberghe S, Scheerlinck K, De Baets B, Verhoest NEC (2011) Calibration of the modified Bartlett-Lewis model using global optimization techniques and alternative objective functions. Hydrol Earth Syst Sci Discuss 8:9707–9756. doi: 10.5194/hess-16-873-2012 CrossRefGoogle Scholar
  33. Verhoest N, Troch PA, De Troch FP (1997) On the applicability of Bartlett–Lewis rectangular pulses models in the modeling of design storms at a point. J Hydrol 202:108–120. doi: 10.1016/S0022-1694(97)00060-7 CrossRefGoogle Scholar
  34. Verhoest NEC, Vandenberghe S, Cabus P, Onof C, Meca-Figueras T, Jameleddine S (2010) Are stochastic point rainfall models able to preserve extreme flood statistics? Hydrol Process 24:3439–3445. doi: 10.1002/hyp.7867 CrossRefGoogle Scholar
  35. VROM (1994) Ministerial circular on second phase remediation paragraph, Soil Protection. Act. Reference DBO/16d94001Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Geography and Earth SciencesAberystwyth UniversityAberystwythUK
  2. 2.Institute of Biological, Environmental and Rural SciencesAberystwythUK
  3. 3.Strata FloridaUK
  4. 4.Dwr Cymru Welsh WaterPontrhydfendigaidUK

Personalised recommendations