Advertisement

Environmental Science and Pollution Research

, Volume 21, Issue 3, pp 2108–2121 | Cite as

Cork stoppers as an effective sorbent for water treatment: the removal of mercury at environmentally relevant concentrations and conditions

  • Cláudia B. Lopes
  • Joana R. Oliveira
  • Luciana S. Rocha
  • Daniela S. Tavares
  • Carlos M. Silva
  • Susana P. Silva
  • Niels Hartog
  • Armando C. Duarte
  • E. Pereira
Research Article

Abstract

The technical feasibility of using stopper-derived cork as an effective biosorbent towards bivalent mercury at environmentally relevant concentrations and conditions was evaluated in this study. Only 25 mg/L of cork powder was able to achieve 94 % of mercury removal for an initial mercury concentration of 500 μg/L. It was found that under the conditions tested, the efficiency of mercury removal expressed as equilibrium removal percentage does not depend on the amount of cork or its particle size, but is very sensitive to initial metal concentration, with higher removal efficiencies at higher initial concentrations. Ion exchange was identified as one of the mechanisms involved in the sorption of Hg onto cork in the absence of ionic competition. Under ionic competition, stopper-derived cork showed to be extremely effective and selective for mercury in binary mixtures, while in complex matrices like seawater, moderate inhibition of the sorption process was observed, attributed to a change in mercury speciation. The loadings achieved are similar to the majority of literature values found for other biosorbents and for other metals, suggesting that cork stoppers can be recycled as an effective biosorbent for water treatment. However, the most interesting result is that equilibrium data show a very rare behaviour, with the isotherm presenting an almost square convex shape to the concentration axis, with an infinite slope for an Hg concentration in solution around 25 μg/L.

Keywords

Mercury Cork Sorption Recycling Ionic competition Kinetic modelling Metal removal 

Notes

Acknowledgments

The authors thank Fundação para a Ciência e a Tecnologia (FCT) (PTDC/MAR-BIO/3533/2012; PEst-C/MAR/LA0017/2011), FSE and POPH for funding. The authors C.B. Lopes and L.S. Rocha also thank their Post-DOC grants (SFRH/BD/45156/2008; SFRH/BD/47166/2008).

Supplementary material

11356_2013_2104_MOESM1_ESM.docx (78 kb)
ESM 1 (DOCX 77 kb)

References

  1. Al Rmalli SW, Dahmani AA, Abuein MM, Gleza AA (2008) Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.). Journal of Hazardous Materials 152 (3):955–959. doi: 10.1016/j.jhazmat.2007.07.111 Google Scholar
  2. Anirudhan TS, Divya L, Ramachandran M (2008) Mercury(II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery. Journal of Hazardous Materials 157(2–3):620–627. doi: 10.1016/j.jhazmat.2008.01.030 CrossRefGoogle Scholar
  3. Bayramoğlu G, Arıca MY (2008) Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets. Chemical Engineering Journal 143 (1–3):133–140. doi: 10.1016/j.cej.2008.01.002 Google Scholar
  4. Cardoso SP, Lopes CB, Pereira E, Duarte AC, Silva CM (2013) Competitive removal of Cd2+ and Hg2+ ions from water using titanosilicate ETS-4: kinetic behaviour and selectivity. Water Air and Soil Pollution 224 (5). doi:  10.1007/s11270-013-1535-z
  5. Chubar N, Carvalho JR, Correia MJN (2003) Cork biomass as biosorbent for Cu(II), Zn(II) and Ni(II). Colloids and Surfaces A: Physicochemical and Engineering Aspects 230 (1–3):57–65. doi:  10.1016/j.colsurfa.2003.09.014
  6. Chubar N, Carvalho JR, Correia MJN (2004) Heavy metals biosorption on cork biomass: effect of the pre-treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects 238 (1–3):51–58. doi:  10.1016/j.colsurfa.2004.01.039
  7. Cordeiro N, Belgacem MN, Silvestre AJD, Neto CP, Gandini A (1998) Cork suberin as a new source of chemicals. 1. Isolation and chemical characterization of its composition. International Journal of Biological Macromolecules 22(2):71–80. doi: 10.1016/s0141-8130(97)00090-1 CrossRefGoogle Scholar
  8. Do DD (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, LondonGoogle Scholar
  9. European Parliament C (2008) Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Official Journal of the European UnionGoogle Scholar
  10. Farooq U, Kozinski JA, Khan MA, Athar M (2010) Biosorption of heavy metal ions using wheat based biosorbents—a review of the recent literature. Bioresource Technology 101 (14):5043–5053. doi: 10.1016/j.biortech.2010.02.030 Google Scholar
  11. Figueira P, Lopes CB, Daniel-da-Silva AL, Pereira E, Duarte AC, Trindade T (2011) Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: application to synthetic and natural spiked waters. Water Research 45(17):5773–5784. doi: 10.1016/j.watres.2011.08.057 CrossRefGoogle Scholar
  12. Fiol N, Villaescusa I, Martinez M, Miralles N, Poch J, Serarols J (2003) Biosorption of Cr(VI) using low cost sorbents. Environmental Chemistry Letters 1(2):135–139. doi: 10.1007/s10311-003-0027-6 CrossRefGoogle Scholar
  13. Gandini A, Pascoal C, Silvestre AJD (2006) Suberin: a promising renewable resource for novel macromolecular materials. Progress in Polymer Science 31(10):878–892. doi: 10.1016/j.progpolymsci.2006.07.004 CrossRefGoogle Scholar
  14. Ghodbane I, Hamdaoui O (2008) Removal of mercury(II) from aqueous media using eucalyptus bark: kinetic and equilibrium studies. Journal of Hazardous Materials 160(2–3):301–309. doi: 10.1016/j.jhazmat.2008.02.116 CrossRefGoogle Scholar
  15. Gil L (1997) Cork powder waste: an overview. Biomass and Bioenergy 13 (1–2):59–61. doi: 10.1016/S0961-9534(97)00033-0
  16. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochemistry 34(5):451–465. doi: 10.1016/s0032-9592(98)00112-5 CrossRefGoogle Scholar
  17. Iftikhar AR, Bhatti HN, Hanif MA, Nadeem R (2009) Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass. J Hazard Mater 161(2–3):941–947. doi: 10.1016/j.jhazmat.2008.04.040 CrossRefGoogle Scholar
  18. Kadirvelu K, Goel J, Rajagopal C (2008) Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent. Journal of Hazardous Materials 153(1–2):502–507. doi: 10.1016/j.jhazmat.2007.08.082 CrossRefGoogle Scholar
  19. Kahraman S, Asma D, Erdemoglu S, Yesilada O (2005) Biosorption of copper(II) by live and dried biomass of the white rot fungi Phanerochaete chrysosporium and Funalia trogii. Engineering in Life Sciences 5(1):72–77. doi: 10.1002/elsc.200420057 CrossRefGoogle Scholar
  20. Karunasagar D, Balarama Krishna MV, Rao SV, Arunachalam J (2005) Removal and preconcentration of inorganic and methyl mercury from aqueous media using a sorbent prepared from the plant Coriandrum sativum. Journal of Hazardous Materials 118 (1–3):133–139. doi: 10.1016/j.jhazmat.2004.10.021 Google Scholar
  21. Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends in Biotechnology 16 (7):291–300. doi: 10.1016/S0167-7799(98)01218-9
  22. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24(4):39Google Scholar
  23. Lopes CB, Figueira P, Tavares DS, Lin Z, Daniel-Da-Silva AL, Duarte AC, Rocha J, Trindade T, Pereira E (2013) Core–shell magnetite-silica dithiocarbamate-derivatised particles achieve the Water Framework Directive quality criteria for mercury in surface waters. Environmental Science and Pollution Research 20 (9). doi: 10.1007/s11356-013-1615-z
  24. Lopes CB, Otero M, Lin Z, Silva CM, Pereira E, Rocha J, Duarte AC (2010) Effect of pH and temperature on Hg(2+) water decontamination using ETS-4 titanosilicate. Journal of Hazardous Materials 175(1–3):439–444. doi: 10.1016/j.jhazmat.2009.10.025 CrossRefGoogle Scholar
  25. Lopes CB, Otero M, Lin Z, Silva CM, Rocha J, Pereira E, Duarte AC (2009) Removal of Hg(2+) ions from aqueous solution by ETS-4 microporous titanosilicate—kinetic and equilibrium studies. Chemical Engineering Journal 151(1–3):247–254. doi: 10.1016/j.cej.2009.02.035 CrossRefGoogle Scholar
  26. Lopez-Mesas M, Navarrete ER, Carrillo F, Palet C (2011) Bioseparation of Pb(II) and Cd(II) from aqueous solution using cork waste biomass. Modeling and optimization of the parameters of the biosorption step. Chemical Engineering Journal 174(1):9–17. doi: 10.1016/j.cej.2011.07.026 CrossRefGoogle Scholar
  27. Low MJD (1960) Kinetics of chemisorption of gases on solids. Chemical Reviews 60(3):267–312. doi: 10.1021/cr60205a003 CrossRefGoogle Scholar
  28. Machado R, Carvalho JR, Correia MJN (2002) Removal of trivalent chromium(III) from solution by biosorption in cork powder. Journal of Chemical Technology and Biotechnology 77(12):1340–1348. doi: 10.1002/jctb.724 CrossRefGoogle Scholar
  29. Ofomaja AE, Ho YS (2007) Effect of pH on cadmium biosorption by coconut copra meal. Journal of Hazardous Materials 139(2):356–362. doi: 10.1016/j.jhazmat.2006.06.039 CrossRefGoogle Scholar
  30. Otero M, Lopes CB, Coimbra J, Ferreira TR, Silva CM, Lin Z, Rocha J, Pereira E, Duarte AC (2009) Priority pollutants (Hg(2+) and Cd(2+)) removal from water by ETS-4 titanosilicate. Desalination 249(2):742–747. doi: 10.1016/j.desal.2009.04.008 CrossRefGoogle Scholar
  31. Pinto P, Sousa AR, Silvestre AJD, Neto CP, Gandini A, Eckerman C, Holmbom B (2009) Quercus suber and Betula pendula outer barks as renewable sources of oleochemicals: a comparative study. Industrial Crops and Products 29(1):126–132. doi: 10.1016/j.indcrop.2008.04.015 CrossRefGoogle Scholar
  32. Psareva TS, Zakutevskyy OI, Chubar NI, Strelko VV, Shaposhnikova TO, Carvalho JR, Correia MJN (2005) Uranium sorption on cork biomass. Colloids and Surfaces A: Physicochemical and Engineering Aspects 252(2–3):231–236. doi: 10.1016/j.colsurfa.2004.10.115 CrossRefGoogle Scholar
  33. ReCORK (2011). http://recork.org/faqs/. Accessed 13 Mar 2013
  34. Riaz M, Nadeem R, Hanif MA, Ansari TM, Rehman KU (2009) Pb(II) biosorption from hazardous aqueous streams using Gossypium hirsutum (cotton) waste biomass. J Hazard Mater 161(1):88–94. doi: 10.1016/j.jhazmat.2008.03.096 CrossRefGoogle Scholar
  35. Rocha L, Lopes C, Borges JA, Duarte AC, Pereira E (2013a) Valuation of unmodified rice husk waste as an eco-friendly sorbent to remove mercury: a study using environmental realistic concentrations. Water, Air, & Soil Pollution 224(7):1–18. doi: 10.1007/s11270-013-1599-9 CrossRefGoogle Scholar
  36. Rocha L, Lopes C, Henriques B, Tavares D, Borges JA, Duarte AC, Pereira E (2013) Competitive effects on mercury removal by an agricultural waste: application to synthetic and natural spiked waters. Environmental Technology. doi: 10.1080/09593330.2013.841267
  37. Rocha SM, Goodfellow BJ, Delgadillo I, Neto CP, Gil AM (2001) Enzymatic isolation and structural characterisation of polymeric suberin of cork from Quercus suber L. International Journal of Biological Macromolecules 28(2):107–119. doi: 10.1016/s0141-8130(00)00163-x CrossRefGoogle Scholar
  38. Sari A, Tuzen M (2009) Removal of mercury(II) from aqueous solution using moss (Drepanocladus revolvens) biomass: equilibrium, thermodynamic and kinetic studies. Journal of Hazardous Materials 171(1–3):500–507. doi: 10.1016/j.jhazmat.2009.06.023 CrossRefGoogle Scholar
  39. Silvestre AJD, Neto CP, Gandini A (2011) Cork and suberins: major sources, properties, applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 305–320Google Scholar
  40. Sousa AF, Pinto P, Silvestre AJD, Neto CP (2006) Triterpenic and other lipophilic components from industrial cork byproducts. Journal of Agricultural and Food Chemistry 54(18):6888–6893. doi: 10.1021/jf060987+ CrossRefGoogle Scholar
  41. Sulaymon AH, Ebrahim SE, Abdullah SM, Al-Musawi TJ (2010) Removal of lead, cadmium, and mercury ions using biosorption. Desalin Water Treat 24(1–3):344–352. doi: 10.5004/dwt.2010.1963 Google Scholar
  42. Vilela C, Sousa AF, Freire CSR, Silvestre AJD, Pascoal Neto C (2013) Novel sustainable composites prepared from cork residues and biopolymers. Biomass and Bioenergy 55 (0):148–155. doi: 10.1016/j.biombioe.2013.01.029
  43. Villaescusa I, Martinez M, Miralles N (2000) Heavy metal uptake from aqueous solution by cork and yohimbe bark wastes. Journal of Chemical Technology and Biotechnology 75(9):812–816. doi: 10.1002/1097-4660(200009)75:9<812::aid-jctb284>3.3.co;2-2 CrossRefGoogle Scholar
  44. Wang XS, Li FY, He W, Miao HH (2010) Hg(II) removal from aqueous solutions by Bacillus subtilis biomass. Clean-Soil Air Water 38(1):44–48. doi: 10.1002/clen.200900201 CrossRefGoogle Scholar
  45. Zhao P, Guo X, Zheng C (2010) Removal of elemental mercury by iodine-modified rice husk ash sorbents. Journal of Environmental Sciences 22 (10):1629–1636. doi: 10.1016/S1001-0742(09)60299-0 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cláudia B. Lopes
    • 1
  • Joana R. Oliveira
    • 1
  • Luciana S. Rocha
    • 1
  • Daniela S. Tavares
    • 1
  • Carlos M. Silva
    • 1
  • Susana P. Silva
    • 2
  • Niels Hartog
    • 3
  • Armando C. Duarte
    • 1
  • E. Pereira
    • 1
  1. 1.Department of Chemistry/CESAM and CICECOUniversity of AveiroAveiroPortugal
  2. 2.Corticeira Amorim, S.G.P.S., S.A.SSanta Maria da FeiraPortugal
  3. 3.KWR Watercycle Research InstituteNieuwegeinThe Netherlands

Personalised recommendations