Environmental Science and Pollution Research

, Volume 21, Issue 1, pp 252–267 | Cite as

Why air quality in the Alps remains a matter of concern. The impact of organic pollutants in the alpine area

  • P. Schroeder
  • C. A. Belis
  • J. Schnelle-Kreis
  • R. Herzig
  • A. S. H. Prevot
  • M. Raveton
  • M. Kirchner
  • M. Catinon
Review Article


In the middle of Europe, the Alps form a geographical and meteorological trap for atmospheric pollutants including volatile and semi-volatile organic compounds emitted in the surrounding lowlands. This is due to their barrier effects, high precipitation rates, and low ambient temperatures. Also the pollutants emitted in the cities inside the Alps spread in the region depending on orographic and meteorological conditions. Although a number of studies on the distribution and effect of pollutants in the Alps has been published, comprehensive information on potential hazards, and ways to improve this sensible environment are lacking. This opinion paper is the result of a discussion during the Winterseminar of the AlpsBioCluster project in Munich. It summarizes the current literature and presents some case studies on local pollution sources in the Alps, and the possibility of using biomonitoring techniques to assess critical pollution loads and distributions.


Organic xenobiotics Wood burning Particles Bioindication 


  1. Agnello G, Catinon M, Ayrault S, Asta J, Tissut M, Ravanel P (2010) A comparative study of atmospheric deposits and lichen populations in a protected alpine area in the Grenoble region (France). Int J Environ Health 4(2–3):235–249Google Scholar
  2. Albinet A et al (2008a) Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys: part 1. Concentrations, sources and gas/particle partitioning. Atmos Environ 42(1):43–54Google Scholar
  3. Albinet A et al (2008b) Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys: Part 2. Particle size distribution. Atmos Environ 42(1):55–64Google Scholar
  4. Alfarra MR, Prevot ASH, Szidat S, Sandradewi J, Weimer S, Schreiber D, Mohr M, Baltensperger U (2007) Identification of the mass spectral signature of organic aerosols from wood burning emissions. Environ Sci Technol 41:5770–5777Google Scholar
  5. Atkins A et al (2010) Profiles of polycyclic aromatic hydrocarbons and polychlorinated biphenyls from the combustion of biomass pellets. Chemosphere 78(11):1385–1392Google Scholar
  6. Aymoz G, Jaffrezo JL, Chapuis D, Cozic J, Maenhaut W (2007) Seasonal variation of PM10 main constituents in two valleys of the French Alps. I: EC/OC fractions. Atmos Chem Phys 7:661–675Google Scholar
  7. Ayrault S, Catinon M, Clochiatti R, Tissut M, Asta J (2009) Complementarity of analytical tools in biomonitoring studies. J Radioanal Nucl Chem 281:131–136Google Scholar
  8. Bacci E, Gaggi C (1987) Chlorinated hydrocarbon vapours and plant foliage: kinetics and applications. Chemosphere 16:2515–2522Google Scholar
  9. Bacci E, Calamari D, Gaggi C, Biney C, Focardi S, Morosini M (1988) Organochlorine pesticides and PCB residues in plant foliage. Chemosphere 17:693–702Google Scholar
  10. Bacci E, Calamari D, Gaggi C, Vighi M (1990a) Bioconcentration of organic chemical vapors in plant leaves: experimental measurements and correlation. Environ Sci Technol 24:885–889Google Scholar
  11. Bacci E, Cerejeira MJ, Gaggi C, Chemello G, Calamari D, Vighi M (1990b) Bioconcentration of organic chemical vapours in plant leaves: the azalea model. Chemosphere 21:525–535Google Scholar
  12. Backe C, Cousins IT, Larsson P (2004) PCB in soils and estimated soil–air exchange fluxes of selected PCB congeners in the South of Sweden. Environ Pollut 128:59–72Google Scholar
  13. Bari MA et al (2009) Wood smoke as a source of particle-phase organic compounds in residential areas. Atmos Environ 43(31):4722–4732Google Scholar
  14. Baumler R, Goerttler T, Zech W (1995) Contents of nutrients and heavy metals in the needles of Norway spruce and silver fir of a mixed mountain forest in the flysch zone (Tegernsee Mountains). Forstwissenschaftliches Centralblatt 114:30–39Google Scholar
  15. Belis CA et al (2009) Comparison of Alpine emissions to forest soil and spruce needle loads for persistent organic pollutants (POPS). Environ Pollut 157(12):3185–3191Google Scholar
  16. Belis CA et al (2011) Sources for PM air pollution in the Po Plain, Italy: I. Critical comparison of methods for estimating biomass burning contributions to benzo(a)pyrene. Atmos Environ 45:7266–7275Google Scholar
  17. Belis CA, Karagulian F, Larsen BR, Hopke PK (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94–108Google Scholar
  18. Bignal KL, Langridge S, Zhou JZ (2008) Release of polycyclic aromatic hydrocarbons, carbon monoxide and particulate matter from biomass combustion in a wood-fired boiler under varying boiler conditions. Atmos Environ 42(39):8863–8871Google Scholar
  19. Borghini F, Grimalt JO, Sanchez-Hernandez JC, Barra R, Torres Garcia CJ, Focardi S (2005) Organochlorine compounds in soils and sediments of the mountain Andean Lakes. Environ Pollut 136:253–266Google Scholar
  20. Brandli RC et al (2008) Critical evaluation of PAH source apportionment tools using data from the Swiss soil monitoring network. J Environ Monit 10(11):1278–1286Google Scholar
  21. Brown RHA, Cape JN, Farmer JG (1999) Chlorinated hydrocarbons in Scots pine needles on Northern Britain. Chemosphere 38:795–806Google Scholar
  22. Calamari D, Bacci E, Focardi S, Gaggi C, Morosini M, Vighi M (1991) Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons. Environ Sci Technol 25:1489–1495Google Scholar
  23. Cape JN, Leith ID, Binnie J, Content J, Donkin M, Skewes M, Price DN, Brown AR, Sharpe AD (2003) Effects od VOCs on herbaceous plants in an open-top chamber experiment. Env Poll 124:341–353Google Scholar
  24. Caseiro A et al (2009) Wood burning impact on PM10 in three Austrian regions. Atmos Environ 43(13):2186–2195Google Scholar
  25. Catinon M, Ayrault S, Daudin L, Sevin L, Asta J, Tissut M, Ravanel P (2008) Atmospheric inorganic contaminants and their distribution inside stem tissues of Fraxinus excelsior L. Atmos Environ 42:1223–1238Google Scholar
  26. Catinon M, Ayrault S, Boudouma O, Asta J, Tissut M, Ravanel P (2009a) The inclusion of atmospheric particles into the bark suber of ash trees. Chemosphere 77:1313–1320Google Scholar
  27. Catinon M, Ayrault S, Clocchiatti R, Boudouma O, Asta J, Tissut M, Ravanel P (2009b) The anthropogenic atmospheric elements fraction: a new interpretation of elemental deposits on tree barks. Atmos Environ 43:1124–1130Google Scholar
  28. Clemens S, Palmgren MG, Kraemer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315Google Scholar
  29. Crutzen PJ (1996) Mein Leben mit O3, NOx und anderen YZOx-Verbindungen (Nobel-Vortrag). Angew Chemie 108:1878–1898Google Scholar
  30. Cunnold D, Prinn R, Rasmussen R (1983) The atmospheric lifetime experiment: 3. Lifetime methodology and application to three years of CFCl3 data. J Geoph Res 88:8379–8400Google Scholar
  31. Daly GL, Wania F (2005) Organic contaminants in mountains. (416), 385–398Google Scholar
  32. Daly GL, Lei YD, Teixeira C, Muir DCG, Wania F (2007) Pesticides in western Canadian mountain air and soil. Environ Sci Technol 41(17):6020–6025Google Scholar
  33. Debus R, Schröder P (1989) Wirkungen von Halon 1211 (Brom-Chlor-Difluor-Methan) auf Kresse (Lepidium sativum). In: Bioindikation. VDI (Ed.), Vol. 745: pp. 563–572. VDI, MannheimGoogle Scholar
  34. Debus R, Schröder P (1991) Responses of Petunia hybrida and Phaseolus vulgaris to fumigation with difluoro-chloro-bromo-methane. Chemosphere 21:1499–1505Google Scholar
  35. Debus R, Schröder P (2000) Effects of halone 1301 on Lepidium sativum, Petunia hybrida and Phaseolus vulgaris. Chemosphere 41:1603–1610Google Scholar
  36. Debus R, Dittrich B, Schröder P, Volmer J (1989) Biomonitoring organischer Luftschadstoffe-Aufnahme und Wirkung in Pflanzen — Literaturstudie. ecomed, Landsberg, München, ZürichGoogle Scholar
  37. Dekant W, Martens G, Vamakas S, Metzler M, Henschler D (1987) Bioactivation of tetrachloroethene: role of glutathione S-transferase catalyzed conjugation versus cytochrome P-450 dependent phospholipid alcylation. Drug Metab Dispos 15(5):702–709Google Scholar
  38. Desaules A et al (2008) PAH and PCB in soils of Switzerland — status and critical review. J Environ Monit 10(11):1265–1277Google Scholar
  39. Dewulf J, Ponnet D, VanLangenhove H (1996) Measurement of atmospheric monocyclic aromatic hydrocarbons and chlorinated C-1- and C-2-hydrocarbons at ng.m−3 concentration levels. Int J Environ Anal Chem 62:289–301Google Scholar
  40. Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71(4):338–350Google Scholar
  41. Elsasser M, Crippa M, Orasche J, DeCarlo PF, Oster M, Pitz M, Cyrys J, Gustafson TL, Pettersson JBC, Schnelle-Kreis J, Prevot ASH, Zimmermann R (2012) Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg, Germany. Atmos Chem Phys 12(14):6113–6128Google Scholar
  42. Favez O et al (2010) Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmos Chem Phys 10(12):5295–5314Google Scholar
  43. Fliri F (1975) Das Klima der Alpen im Raum von Tirol. Monigraphien zur Landeskunde Tirols 1. Universitätsverlag Wagner, Innsbruck/MünchenGoogle Scholar
  44. Forchhammer L, Loft S, Roursgaard M, Cao Y, Riddervold IS, Sigsgaard T, Moller P (2012) Expression of adhesion molecules, monocyte interactions and oxidative stress in human endothelial cells exposed to wood smoke and diesel exhaust particulate matter. Toxicol Lett 209:121–128Google Scholar
  45. Frank H (1984) Waldschäden durch Photooxidantien? Nach Chem Tech Lab 32:298–304Google Scholar
  46. Frank H, Frank W (1986) Photochemical activation of chloroethenes leading to destruction of photosynthetic pigments. Experientia 42:1267–1269Google Scholar
  47. Frey AK et al (2009) Chemical composition and mass size distribution of fine particulate matter emitted by a small masonry heater. Boreal Environ Res 14(2):255–271Google Scholar
  48. Furger M, Dommen J, Graber WK, Poggio L, Prévôt A, Emeis S, Grell G, Trickl T, Gomiscek B, Neininger B, Wotawa G (2000) The VOTALP Mesolcina Valley Campaign 1996 — concept, background and some highlights. Atmos Environ 34:1395–1412Google Scholar
  49. Gabrielli P, Cozzi G, Torcini S, Cescon P, Barbante C (2008) Trace elements in winter snow of the Dolomites (Italy): a statistical study of natural and anthropogenic contributions. Chemosph 72:1504–1509Google Scholar
  50. Gaeggeler K, Prevot ASH, Dommen J, Legreid G, Reimann S, Baltensperger U (2008) Residential wood burning in an Alpine valley as a source for oxygenated volatile organic compounds, hydrocarbons and organic acids. Atmos Environ 42:8278–8287Google Scholar
  51. Gaggi C, Bacci E, Calamari D, Fanelli R (1985) Chlorinated hydrocarbons in plant foliage: an indication of the tropospheric contamination level. Chemosph 14:1673–1686Google Scholar
  52. Gallego E, Grimalt JO, Bartrons M, Lopez JF, Camarero L, Catalan J, Stuchlik E et al (2007) Altitudinal gradients of PBDEs and PCBs in fish from European high mountain lakes. Environ Sci Technol 41(7):2196–2202Google Scholar
  53. German Environment Agency (2006) “Die Nebenwirkungen der Behaglichkeit – Feinstaub aus Kamin und Holzofen”; Umweltbundesamt, Marz 2006, http://www.umweltbundesamt.de/uba-infopresse/hintergrund/holzfeuerung.pdf
  54. Grieshop AP, Donahue NM, Robinson AL (2009a) Laboratory investigation of photochemical oxidation of organic aerosol from wood fires: 2. Analysis of aerosol mass spectrometer data. Atmos Chem Phys 9(6):2227–2240Google Scholar
  55. Grieshop AP, Logue JM, Donahue NM, Robinson AL (2009b) Laboratory investigation of photochemical oxidation of organic aerosol from wood fires: 1. Measurement and simulation of organic aerosol evolution. Atmos Chem Phys 9(4):1263–1277Google Scholar
  56. Grimmer G, Schmidt W (1986) Modellversuche zur Phytotoxizität von Halogenkohlenwasserstoffen. Angew Chemie 98(9):807–808Google Scholar
  57. Gullett BK, Touati A, Hays MD (2003) PCDD/F, PCB, HxCBz, PAH, and PM emission factors for fireplace and woodstove combustion in the San Francisco Bay region. Environ Sci Technol 37(9):1758–1765Google Scholar
  58. Hansch C, Leo AJ (1985) MedChem Project. Issue No. 26. Pomona College, Claremont, CAGoogle Scholar
  59. Hauck M, Jung R, Runge M (2001) Relevance of element content of bark for the distribution of epiphytic lichens in a montane spruce forest affected by forest dieback. Environ Pollut 112:221–227Google Scholar
  60. Hedberg E et al (2002) Chemical and physical characterization of emissions from birch wood combustion in a wood stove. Atmos Environ 36(30):4823–4837Google Scholar
  61. Heimbürger LH, Migon C, Dufour A, Chiffoleau JF, Cossa D (2010) Trace metal concentrations in the North-western Mediterranean atmospheric aerosol between 1986 and 2008: seasonal patterns and decadal trends. Sci Total Environ 408:2629–2638Google Scholar
  62. Henne S, Furger M, Nyeki S, Steinbacher M, Neininger B, De Wekker SFJ, Dommen J, Spichtinger N, Stohl A, Prevot ASH (2004) Quantification of topographic venting of boundary layer air to the free troposphere. Atmos Chem Phys 4:497–509Google Scholar
  63. Hennigan CJ, Sullivan AP, Collett JL et al (2010) Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophys Res Lett 37, L09806Google Scholar
  64. Heringa MF, DeCarlo PF, Chirico R, Tritscher T, Dommen J, Weingartner E, Richter R, Wehrle G, Prevot ASH, Baltensperger U (2011) Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer. Atmos Chem Phys 11(12):5945–5957Google Scholar
  65. Heringa MF, DeCarlo PF, Chirico R, Lauber A, Doberer A, Good J, Nussbaumer T, Keller A, Burtscher H, Richard A, Miljevic B, Prevot ASH, Baltensperger U (2012) Time-resolved characterization of primary emissions from residential wood combustion appliances. Environ Sci Technol 46(20):11418–11425Google Scholar
  66. Herzig R (1993) Multi-residue analysis with passive biomonitoring: a new approach for volatile multi-element contents, heavy metals and polycyclic aromatic hydrocarbons with lichens in Switzerland and the Principality of Liechtenstein. In: Plants as biomonitors for heavy metal pollution in the terrestrial environment, pp. 285–328. Ed. Markert, B., VCH-Verlags-gesellschaft WeinheimGoogle Scholar
  67. Herzig R (2006) Monitoring flankierende Massnahmen Umwelt (MfMU): Luftqualitätsmonitoring mit Flechten entlang der Alpentransitautobahnen A2 und A13 und Zuweisung relevanter Luftschadstoffe zum Schwerverkehr. Kurzfassung 21.9.06. Schweiz. Bundesamt für Umwelt, BAFU, CH-3003 BernGoogle Scholar
  68. Herzig R (2007) Monitoring flankierende Massnahmen Umwelt (MfMU): Luftqualitätsmonitoring mit Flechten entlang der Alpentransitautobahnen A2 und A13 und Zuweisung relevanter Luftschadstoffe zum Schwerverkehr. Schlussbericht Januar 2007. Schweiz. Bundesamt für Umwelt, BAFU, CH-3003 BernGoogle Scholar
  69. Herzig R, Bieri C (2002) Persistente organische Luftschadstoffe (POPs) in der Schweiz. Umweltmaterialien Nr. 146 Luft. Schweiz. Bundesamt für Umwelt, BAFU, CH-3003 Bern www.buwalshop.ch
  70. Herzig R et al (1989) Lichens as biological indicators of air pollution in Switzerland. Passive biomonitoring as a part of an integrated biological system of monitoring air pollution. Intern J Environ Anal Chem 35:43–57Google Scholar
  71. Horvath AL (1982) Halogenated hydrocarbons. Marcel Dekker, New York, NYGoogle Scholar
  72. Hytonen K et al (2009) Gas-Particle Distribution of PAHs in wood combustion emission determined with annular denuders, filter, and polyurethane foam adsorbent. Aerosol Sci Technol 43(5):442–454Google Scholar
  73. Iozza S, Schmid P, Oehme M (2009) Development of a comprehensive analytical method for the determination of chlorinated paraffins in spruce needles applied in passive air sampling. Environ Pollut 157(12):3218–3224Google Scholar
  74. Jones KC, De Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100(1–3):209–221Google Scholar
  75. Jordan TB, Seen AJ (2005) Effect of airflow setting on the organic composition of woodheater emissions. Environ Sci Technol 39(10):3601–3610Google Scholar
  76. Kaiser A, Scheifinger H, Weiss A, Gilge S, Ries L, Cemas D, Jesenovec B (2007) Transport of nitrogen oxides, carbon monoxide and ozone to the alpine global atmosphere watch stations Jungfraujoch (Switzerland), Zugspitze and Hohenpeißenberg (Germany), Sonnblick (Austria) and Mt. Krvavec (Slovenia). Atmosph Environm 41:9273–9287Google Scholar
  77. Kaiser A (2009) Origin of polluted air masses in the Alps. An overview and first results for MONARPOP. Environ Pollut 157:3232–3237Google Scholar
  78. Kalberer M et al (2004) Vertical transport and degradation of polycyclic aromatic hydrocarbons in an Alpine Valley. Atmos Environ 38(37):6447–6456Google Scholar
  79. Kirchner M, Faus-Kessler T, Jakobi G, Levy W, Henkelmann B, Bernhöft S, Kotalik J, Zsolnay A, Bassan R, Belis C, Kräuchi N, Moche W, Simončič P, Uhl M, Weiss P, Schramm K-W (2009) Vertical distribution of organochlorine pesticides in humus along Alpine altitudinal profiles in relation to ambiental parameters. Environ Pollut 157:3238–3247Google Scholar
  80. Kirchner M, Faus-Kessler T, Jakobi G, Leuchner M, Ries L, Scheel H-E, Suppan P (2013) Altitudinal temperature lapse rates in an Alpine valley: trends and the influence of season and weather patterns. Int J Climatol 33(3):539–555Google Scholar
  81. Kristen U, Lockhausen J, Petersen W, Schlut B, Strube K (1992) Veränderungen an Fichtennadeln nach Begasunng mit 2,4-Dinitrophenol, Benzaldehyd, Furfural, Trichlorethan und Trichloressigsäure. GKSS-Rep. 92, GKSS, Geesthacht, pp. 341–352Google Scholar
  82. Lanz VA et al (2008) Source attribution of submicron organic aerosols during wintertime inversions by advanced factor analysis of aerosol mass spectra. Environ Sci Technol 42(1):214–220Google Scholar
  83. Lanz VA, Prévôt ASH, Alfarra MR, Mohr C, DeCarlo PF, Weimer S, Gianini MFD, Hueglin C, Schneider J, Favez O, D’Anna B, George C, Baltensperger U (2009) Characterization of aerosol chemical composition by aerosol mass spectrometry in Central Europe: an overview. Atmos Chem Phys Discuss 9:24985–25021Google Scholar
  84. Löflund M, Kasper-Giebl A, Stopper S, Urban H, Biebl P, Kirchner M, Braeutigam S, Puxbaum H (2002) Monitoring ammonia in urban, inner alpine and pre-alpine ambient air. J Environ Monit 4:205–209Google Scholar
  85. Marchand N et al (2004) Polycyclic aromatic hydrocarbons (PAHs) in the atmospheres of two French alpine valleys: sources and temporal patterns. Atmos Chem Phys 4:1167–1181Google Scholar
  86. Miljevic B, Heringa MF, Keller A, Meyer NK, Good J, Lauber A, Decarlo PF, Fairfull-Smith KE, Nussbaumer T, Burtscher H, Prevot ASH, Baltensperger U, Bottle SE, Ristovski ZD (2010) Oxidative potential of logwood and pellet burning particles assessed by a novel profluorescent nitroxide probe. Environ Sci Technol 44(17):6601–6607Google Scholar
  87. Moller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S (2010) Role of oxidative damage in toxicity of particulates. Free Radical Res 44:1–46Google Scholar
  88. Moreno T, Querol X, Alaustuey A, De la Rosa J, Sanchez de la Campa AM, Minguillon MC, Pandolfi M, Gonzalez-Castanedo Y, Monfort E, Gibbons W (2010) Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Sci Total Environ 408:4569–4579Google Scholar
  89. Muri G, Wakeham SG, Rose NL (2006) Records of atmospheric delivery of pyrolysis-derived pollutants in recent mountain lake sediments of the Julian Alps (NW Slovenia). Environ Pollut 139(3):461–468Google Scholar
  90. Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19(1):67–106Google Scholar
  91. Niu J, Chen J, Henkelmann B, Quan X, Yang F, Kettrup A, Schramm K-W (2003) Photodegradation of PCDD/Fs adsorbed on spruce (Picea abies (L.) Karst.) needles under sunlight irradiation. Chemosphere 50:1217–1225Google Scholar
  92. Offenthaler I, Bassan R, Belis C, Jakobi G, Kirchner M, Kräuchi N, Moche W, Schramm K-W, Sedivy I, Simončič P, Uhl M, Weiss P (2009) PCDD/F and PCB in spruce forests of the Alps. Environ Pollut 157(12):3280–3289Google Scholar
  93. Orasche J, Seidel T, Hartmann H, Schnelle-Kreis J, Chow J, Ruppert H, Zimmermann R (2012) Comparison of emissions from wood combustion – emission factors and characteristics from different small scale residential heating appliances considering particulate matter and PAH related toxicological potential of particle bound organic species. Energy Fuels 26:6695–6704Google Scholar
  94. Pacyna JM et al (2003) European atmospheric emissions of selected persistent organic pollutants, 1970–1995. Atmos Environ 37:S119–S131Google Scholar
  95. Pearson CR (1982) Halogenated aromatics. In: Hutzinger O (ed) Handbook of environmental chemistry 3(B). Springer, BerlinGoogle Scholar
  96. Perron N, Sandradewi J, Alfarra MR, Lienemann P, Gehrig R, Kasper-Giebl A, Lanz VA, Szidat S, Ruff M, Fahrni S, Wacker L, Baltensperger U, Prévôt ASH (2010) Composition and sources of particulate matter in an industrialised Alpine valley. Atmos Chem Phys Discuss 10:9391–9430Google Scholar
  97. Piazzalunga A, Belis C, Bernardoni V, Cazzuli O, Fermo P, Valli G, Vecchi R (2011) Estimates of wood burning contribution to PM by the macro-tracer method using tailored emission factors. Atmos Environ 45:6642–6649Google Scholar
  98. Plümacher J, Schröder P (1994) Accumulation and fate of C1/C2-chlorocarbons and trichloroacetic acid in spruce needles from an Austrian mountain site. Chemosphere 29(9–11):2467–2476Google Scholar
  99. Plümacher J, Renner I, Schröder P (1993) Volatile chlorinated hydrocarbons and trichloroacetic acid in conifer needles. In: Schröder P., Frank H., and Rether B. (Eds.): Volatile organic pollutants: levels, fate and ecotoxicological impacts. IFU Schriftenreihe 23(93):37–51Google Scholar
  100. Prévôt ASH, Dommen J, Bäumle M, Furger M (2000a) Diurnal variations of volatile organic compounds and local circulation systems in an Alpine valley. Atmos Environ 34:1413–1423Google Scholar
  101. Prévôt ASH, Dommen J, Bäumle M (2000b) Influence of road traffic on volatile organic compound concentrations in and above a deep Alpine valley. Atmos Environ 34:4719–4726Google Scholar
  102. Prinn RG, Rasmussen RA, Simmonds PG, Aleyea FN, Cunnold DM, Lane BC, Cardelino CA, Crawford AJ (1983a) The atmospheric lifetime experiment: 5. Results for CH3CCl3 based on 3 years data. J Geophys Res 88(C13):8415–8426Google Scholar
  103. Prinn RG, Simmonds PG, Rasmussen RA, Rosen RD, Aleyea FN, Cardlino CA, Crawford AJ, Cunnold DM, Fraser PJ, Lovelock JE (1983b) The atmospheric lifetime experiment: 1. Introduction, instrumentation and overview. J Geophys Res 88(C13):8353–8367Google Scholar
  104. Reischl A, Reissinger M, Hutzinger O (1987) Accumulation of organic air constitutents by plant surfaces: Part 3. Occurrence and distribution of atmospheric organic micropollutants in conifer needles. Chemosphere 16:2647–2652Google Scholar
  105. Rolland C (2003) Spatial and seasonal variations of air temperature lapse rates in alpine regions. J Clim 16:1032–1046Google Scholar
  106. Rosner D, Markowitz G (2012) Persistent pollutants: a brief history of the discovery of the widespread toxicity of chlorinated hydrocarbons. Environ Res 120:126–133Google Scholar
  107. Salvador P et al (2010) Evaluation of aerosol sources at European high altitude background sites with trajectory statistical methods. Atmos Environ 44(19):2316–2329Google Scholar
  108. Sandradewi J, Prevot ASH, Weingartner E, Schmidhauser R, Gysel M, Baltensperger U (2008a) A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength aethalometer. Atmos Environ 42:101–112Google Scholar
  109. Sandradewi J, Prevot ASH, Szidat S, Perron N, Lanz VA, Weingartner E, Baltensperger U (2008b) Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ Sci Technol 42:3316–3323Google Scholar
  110. Saurer M, Prevot ASH, Sandradewi J, Baltensperger U, Siegwolf RTW (2009) The influence of traffic and wood combustion on the stable isotopic composition of carbon monoxide. Atmos Chem Phys 9:3147–3161Google Scholar
  111. Schauer JJ et al (2001) Measurement of emissions from air pollution sources: 3. C-1–C-29 organic compounds from fireplace combustion of wood. Environ Sci Technol 35(9):1716–1728Google Scholar
  112. Schmid P, Gujer E, Zennegg M, Bucheli TD, Desaules A (2005) Correlation of PCDD/F and PCB concentrations in soil samples from the Swiss soil monitoring network (NABO) to specific parameters of the observation sites. Chemosphere 58(3):227–234Google Scholar
  113. Schmidl C et al (2008a) Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmos Environ 42(1):126–141Google Scholar
  114. Schmidl C et al (2008b) Chemical characterisation of particle emissions from burning leaves. Atmos Environ 42(40):9070–9079Google Scholar
  115. Schnelle-Kreis J et al (2007) Semi volatile organic compounds in ambient PM2.5. Seasonal trends and daily resolved source contributions. Environ Sci Technol 41(11):3821–3828Google Scholar
  116. Schnelle-Kreis J et al (2010) Anteil von Partikelemissionen aus Holzverbrennung an PM10-Feinstaubimmissionen im städtischen Umfeld am Beispiel von Augsburg: Teil 1. Emissions- und Immissionsmessungen. Gefahrstoffe Reinhaltung der Luft 5:203–209Google Scholar
  117. Schröder P (1998) Halogenated air pollutants. In: DeKok LJ, Stulen I (eds) Responses of plants to air pollution and global change. Backhuys Publ, Leiden, NL, pp 131–145Google Scholar
  118. Schröder P (2007) Exploiting plant metabolism for phytoremediation of organic Xenobiotics. In: Willey N (ed) Phytoremediation: Methods and reviews. Humana, NJ, USA, pp 251–265Google Scholar
  119. Schröder P, Belford EJ (1996) Untersuchung zur Aktivität von Glutathion S-Transferase in Nadeln von Fichten im Schulterberg- und Christlumprofil. FBVA-Ber 94:75–82Google Scholar
  120. Schröder P, Weiss A (1991) Uptake and detoxification of chlorinated hydrocarbons by spruce trees. In: Schwartz SE, Slinn GWN (eds) Precipitation scavenging and atmosphere surface exchange. Hemisphere Publ, Washington, pp 1011–1021Google Scholar
  121. Schröder P, Pflugmacher S, Rennenberg H (1992) Biomarker für organische Schadstoffe in Fichten: dynamik des Entgiftungsenzyms Glutathion S-Transferase. Ang Botanik 66:174–179Google Scholar
  122. Schröder P, Frank H, Rether B (eds) (1993) Volatile organic pollutants: Levels, fate and ecotoxicological impacts. Proc. 2nd IMTOX Workshop. Wiss.-Verl. Maraun, FrankfurtGoogle Scholar
  123. Sinkkonen S, Welling L, Vattulainen A, Lahti L, Lahtiperä M, Paasivirta J (1996) Short chain aliphatic halocarbons and polychlorinated biphenyls in pine needles: effects of metal scrap plant emissions. Chemosphere 32:1971–1982Google Scholar
  124. Smidt S (1993) Emissions and input of VOCs in Austria and their possible contribution to forest decline. In: Schröder P, Rether B, Frank H (eds) Volatile organic pollutants: Levels, fate and ecotoxicological impacts. Proc. 2nd IMTOX Workshop. Wiss.-Verl. Maraun, Frankfurt, pp 12–27Google Scholar
  125. Struschka M et al (2003) Ermittlung und Evaluierung der Feinstaubemissionen aus Kleinfeuerungsanlagen im Bereich der Haushalte und Kleinverbraucher sowie Ableitung von geeigneten Maßnahmen zur Emissionsminderung in UBA-Texte 41/03, Umweltbundesamt, Editor: BerlinGoogle Scholar
  126. Szidat S, Prevot ASH, Sandradewi J, Alfarra MR, Synal H-A, Wacker L, Baltensperger U (2007) Dominant impact of residential wood burning on particulate matter in Alpine valleys during winter. Geophys Res Lett 34, L05820Google Scholar
  127. Tian HZ, Zhao D, He MC, Wang Y, Cheng K (2011) Temporal and spatial distribution of atmospheric antimony emission inventories from coal combustion in China. Environ Pollut 159:1613–1619Google Scholar
  128. Tremolada P, Parolini M, Binelli A, Ballabio C, Comolli R, Provini A (2009a) Preferential retention of POPs on the northern aspect of mountains. Environ Pollut 157:3298–3307Google Scholar
  129. Tremolada P et al (2009b) Seasonal changes and temperature-dependent accumulation of polycyclic aromatic hydrocarbons in high-altitude soils. Sci Total Environ 407(14):4269–4277Google Scholar
  130. Usenko S, Simonich SLM, Hageman KJ, Schrlau JE, Geiser L, Campbell DH, Appleby PG et al (2010) Sources and deposition of polycyclic aromatic hydrocarbons to western US National parks. Environ Sci Technol 44(12):4512–4518Google Scholar
  131. Van Drooge BL, Ballesta PP (2009) Seasonal and daily source apportionment of polycyclic aromatic hydrocarbon concentrations in PM10 in a semirural European area. Environ Sci Technol 43(19):7310–7316Google Scholar
  132. Verma V, Polidori A, Schauer JJ, Shafer MM, Cassee FR, Sioutas C (2009) Physicochemical and toxicological profiles of particulate matter in Los Angeles during the October 2007 Southern California Wildfires. Environ Sci Technol 43:954–960Google Scholar
  133. Weber-Lotfi F, Pfohl-Leskowicz A, Keith G, Pillay DN, Dietrich A, Rether B, Guillemaut P (1992) Formation of abnormal hypermodified nucleotides on plant DNA upon xenobiotic action. Plant Sci 86:13–19Google Scholar
  134. Weimer S, Alfarra MR, Schreiber D, Mohr M, Prevot ASH, Baltensperger U (2008) Organic aerosol mass spectral signatures from wood burning emissions: influence of burning conditions and wood type. J Geophys Res 113, D10304. doi:10.1029/2007JD009309 Google Scholar
  135. Weimer S et al (2009) Mobile measurements of aerosol number and volume size distributions in an Alpine valley: influence of traffic versus wood burning. Atmos Environ 43(3):624–630Google Scholar
  136. Weiss P (2002) Organische Schadstoffe an entlegenen Waldstandorten Sloweniens und Kärntens. Umweltbundesamt Wien BE-195Google Scholar
  137. Weiss P, Halsall C (2009) The susceptibility of organic contaminants to undergo “cold-trapping” at high elevations—where a combination of cooler air temperatures and higher rates of precipitation serve to enhance chemical deposition—is a real concern, with some evidence to show an increase in certain contaminants at higher altitudes relative to lowland regions. Foreword. Environ Pollut 157(12):3183–3184Google Scholar
  138. Weiss P, Lorbeer G, Stephan C, Svabenicky F (1998) Short chain aliphatic halocarbons, trichloroacetic acid and nitrophenols in spruce needles of Austrian background forest sites. In: Weiss P., Schröder P., Rether B., Keith G., Collins C., and Bach Th. (Eds.): Organic xenobiotics and plants: impact, metabolism and toxicology. Proceedings of the 4th IMTOX-Workshop. Umweltbundesamt Wien CP-24:49–64Google Scholar
  139. Weiss P, Lorbeer G, Scharf S (2000) Regional aspects and statistical characterisation of the load with semivolatile organic compounds at remote Austrian forest sites. Chemosphere 40:1159–1171Google Scholar
  140. Weiss P, May R, Schröder P (2001) Nitrophenole, halogenierte Kohlenwasserstoffe und enzymatische Reaktionen in Fichtennadeln emittentennaher Standorte Österreichs. Umweltbundesamt Wien M-151Google Scholar
  141. Weiss P, Bassan R, Belis C, Iozza S, Jakobi G, Kirchner M, Knoth W, Kräuchi N, Levy-Lopez W, Moche W, Offenthaler I, Raccanelli S, Schramm K-W, Sedivy I, Simoncic P, Uhl M (2007) Synthesis of the findings of the project MONARPOP. Monitoraggio dei POPs sul territorio alpino. pp 21–26, Arpa Lombardia 2007. ISBN 978-88-903167-0-8Google Scholar
  142. Weissflog L, Forczek ST, Lange CA, Kotte K, Pfenningsdorf A, Rohlenova J, Fuksova K, Uhlirova H, Matucha M, Schröder P, Krueger G (2007) Oxidative biodegradation of tetrachloroethene in needles of Norway spruce (Picea abies L.). South Afr J Bot 73:89–96Google Scholar
  143. Werner H, Kirchner M, Welzl G, Hangartner M (1999) Ozone measurements along vertical transects in the Alps. Environ Sci Pollut Res 6(2):83–87Google Scholar
  144. Winiwarter W et al (2009) Quality considerations of European PM emission inventories. Atmos Environ 43(25):3819–3828Google Scholar
  145. Wolf AE, Dietz KJ, Schröder P (1996) A carboxypeptidase degrades glutathione conjugates in the vacuoles of higher plants. FEBS Lett 384:31–34Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. Schroeder
    • 1
  • C. A. Belis
    • 2
  • J. Schnelle-Kreis
    • 3
  • R. Herzig
    • 4
  • A. S. H. Prevot
    • 5
  • M. Raveton
    • 6
  • M. Kirchner
    • 3
  • M. Catinon
    • 6
  1. 1.Helmholtz Zentrum München, GmbH, Research Unit Microbe Plant InteractionsNeuherbergGermany
  2. 2.European Commission, Joint Research Centre, Institute for Environment and SustainabilityIspraItaly
  3. 3.Helmholtz Zentrum München, GmbH, Cooperation Group Comprehensive Molecular AnalyticsNeuherbergGermany
  4. 4.AGB, Arbeitsgemeinschaft für Bioindikation, Umweltbeobachtung und ökologische PlanungBernSchwitzerland
  5. 5.Paul Scherrer Institute, Laboratory for Atmospheric ChemistryVilligenSwitzerland
  6. 6.Laboratoire LECA, UMR 5553, Research Unit Pollution—Environment–Ecotoxicology–EcoremediationUniv. J. FourierGrenobleFrance

Personalised recommendations