Environmental Science and Pollution Research

, Volume 21, Issue 1, pp 695–703 | Cite as

Trends in arsenic levels in PM10 and PM2.5 aerosol fractions in an industrialized area

  • J. R. García-Aleix
  • J. M. Delgado-Saborit
  • G. Verdú-Martín
  • J. M. Amigó-Descarrega
  • V. Esteve-Cano
Research Article


Arsenic is a toxic element that affects human health and is widely distributed in the environment. In the area of study, the main Spanish and second largest European industrial ceramic cluster, the main source of arsenic aerosol is related to the impurities in some boracic minerals used in the ceramic process. Epidemiological studies on cancer occurrence in Spain points out the study region as one with the greater risk of cancer. Concentrations of particulate matter and arsenic content in PM10 and PM2.5 were measured and characterized by ICP-MS in the area of study during the years 2005–2010. Concentrations of PM10 and its arsenic content range from 27 to 46 μg/m3 and from 0.7 to 6 ng/m3 in the industrial area, respectively, and from 25 to 40 μg/m3 and from 0.7 to 2.8 ng/m3 in the urban area, respectively. Concentrations of PM2.5 and its arsenic content range from 12 to 14 μg/m3 and from 0.5 to 1.4 ng/m3 in the urban background area, respectively. Most of the arsenic content is present in the fine fraction, with ratios of PM2.5/PM10 in the range of 0.65–0.87. PM10, PM2.5, and its arsenic content show a sharp decrease in recent years associated with the economic downturn, which severely hit the production of ceramic materials in the area under study. The sharp production decrease due to the economic crisis combined with several technological improvements in recent years such as substitution of boron, which contains As impurities as raw material, have reduced the concentrations of PM10, PM2.5, and As in air to an extent that currently meets the existing European regulations.


Arsenic Atmospheric particles PM2.5 PM10 Ceramic industry 

Supplementary material

11356_2013_1950_MOESM1_ESM.docx (14 kb)
ESM 1(DOCX 14.2 kb)


  1. Arruti A, Fernandez-Olmo I, Irabien A (2011) Impact of the global economic crisis on metal levels in particulate matter (PM) at an urban area in the Cantabria region (northern Spain). Environ Pollut 159:1129–1135CrossRefGoogle Scholar
  2. Arslan F, Arslan C, Celik MS (1999) Arsenic removal through the decrepitation of colemanite ores. Powder Technol 103:260–264CrossRefGoogle Scholar
  3. Benach J, Yasui Y, Borrell C, Rosa E, Pasarin MI, Benach N et al (2003) Examining geographic patterns of mortality: the atlas of mortality in small areas in Spain (1987–1995). Eur J Public Health 13:115–123CrossRefGoogle Scholar
  4. Cantor KP, Lubin JH (2007) Arsenic, internal cancers, and issues in inference from studies of low-level exposures in human populations. Toxicol Appl Pharmacol 222:252–257CrossRefGoogle Scholar
  5. Celades I, Moliner-Salvador R, Ros-Dosda T, Monfort E, Zaera V (2012) Environmental development of the spanish ceramic tile manufacturing sector over the period 1992–2007. Boletin de la Sociedad Espanola de Ceramica y Vidrio 51:111–118Google Scholar
  6. Chappell WR, Abernathy CO, Calderon RL, Thomas DJ (eds) (2003) Arsenic exposure and health effects V. Proceedings of the Fifth International Conference on Arsenic Exposure and Health Effects, 14–18 July 2002, San Diego, CaliforniaGoogle Scholar
  7. Chen WH, Bochmann F, Sun Y (2007) Effects of work related confounders on the association between silica exposure and lung cancer: a nested case–control study among Chinese miners and pottery workers. Int Arch Occup Environ health 80:320–326Google Scholar
  8. CNE (Centro Nacional de Epidemiología) (2011) Available at http://revista.isciii.es/index.php/bes/article/view/339
  9. Cohen SM, Arnold LL, Eldan M, Lewis AS, Beck BD (2006) Methylated arsenicals: the implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit Rev Toxicol 36:99–133CrossRefGoogle Scholar
  10. Delgado-Saborit JM, Esteve-Cano V (2007) Field comparison of passive samplers versus UV-photometric analyser to measure surface ozone in a Mediterranean area. J Environ Monit 9:610–615CrossRefGoogle Scholar
  11. Diaz-Villasenor A, Burns AL, Hiriart M, Cebrian ME, Ostrosky-Wegman P (2007) Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus. Toxicol Appl Pharmacol 225:123–133CrossRefGoogle Scholar
  12. Directive 1999/30/EC of the European Parliament and of the Council of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient airGoogle Scholar
  13. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient airGoogle Scholar
  14. Duker AA, Carranza EJM, Hale M (2005) Arsenic geochemistry and health. Environ Int 31:631–641CrossRefGoogle Scholar
  15. Englyst V, Lundstrom NG, Gerhardsson L, Rylander L, Nordberg G (2001) Lung cancer risks among lead smelter workers also exposed to arsenic. Sci Total Environ 273:77–82CrossRefGoogle Scholar
  16. Esteve V, Peris G (2000) Ionic characterization of size fractionated airborne tropospheric particulate at Castellón (Spain). Journal of Aerosol Science 31:346–347Google Scholar
  17. Esteve V, Ramos A (1999) Materiales para la decoración cerámica. Recomendaciones para su correcta manipulaciónGoogle Scholar
  18. Fang GC, Chang CN, Wu YS, Fu PPC, Yang DG, Chu CC (1999) Characterization of chemical species in PM2.5 and PM10 aerosols in suburban and rural sites of central Taiwan. Sci Total Environ 234:203–212CrossRefGoogle Scholar
  19. Fernandez-Camacho R, Rodriguez S, de la Rosa J, de la Campa AMS, Viana M, Alastuey A et al (2010) Ultrafine particle formation in the inland sea breeze airflow in southwest Europe. Atmos Chem Phys 10:9615–9630CrossRefGoogle Scholar
  20. Figueroa DA, Rodriguez-Sierra CJ, Jimenez-Velez BD (2006) Concentrations of Ni and V, other heavy metals, arsenic, elemental and organic carbon in atmospheric fine particles (PM2.5) from Puerto Rico. Toxicol Ind Health 22:87–99CrossRefGoogle Scholar
  21. Gao Y, Nelson ED, Field MP, Ding Q, Li H, Sherrell RM, Gigliotti CL, Van Ry DA, Glenn TR, Eisenreich SJ (2002) Characterization of atmospheric trace elements on PM(2.5) particulate matter over the New York–New Jersey harbor estuary. Atmos Environ 36:1077–1086CrossRefGoogle Scholar
  22. Halek F, Keyanpour-Rad M, Darbani RM, Kavousirahim A (2010) Concentrations and source assessment of some atmospheric trace elements in northwestern region of Tehran, Iran. Bull Environ Contam Toxicol 84:185–190CrossRefGoogle Scholar
  23. Hayes RB (1997) The carcinogenicity of metals in humans. Cancer Causes Control 8:371–385CrossRefGoogle Scholar
  24. He ZLL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140CrossRefGoogle Scholar
  25. Hetland RB, Refsnes M, Myran T, Johansen BV, Uthus N, Schwarze PE (2000) Mineral and/or metal content as critical determinants of particle-induced release of IL-6 and IL-8 from A549 cells. J Toxicol Environ Health A 60:47–65CrossRefGoogle Scholar
  26. Ho KF, Lee SC, Yu JC, Zou SC, Fung K (2002) Carbonaceous characteristics of atmospheric particulate matter in Hong Kong. Sci Total Environ 300:59–67CrossRefGoogle Scholar
  27. Holmes CW, Miller R (2004) Atmospherically transported elements and deposition in the southeastern United States: local or transoceanic? Appl Geochem 19:1189–1200CrossRefGoogle Scholar
  28. IARC (2009) IARC monographs on the evaluation of carcinogenic risks to humans. Complete list of agents evaluated and their classification. IARC Monograph 100C-6 2012. Available at http://monographs.iarc.fr/ENG/Classification/index.php
  29. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D et al (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107Google Scholar
  30. Karagolge Z, Alkan M, Donmez B (2002) Removal of arsenic from colemanite ore containing arsenic by froth flotation. J Chem Eng Jpn 35:217–225Google Scholar
  31. Lewis AS, Reid KR, Pollock MC, Campleman SL (2012) Speciated arsenic in air: measurement methodology and risk assessment considerations. J Air Waste Manage Assoc 62:2–17CrossRefGoogle Scholar
  32. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235CrossRefGoogle Scholar
  33. Marcazzan GM, Vaccaro S, Valli G, Vecchi R (2001) Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos Environ 35:4639–4650CrossRefGoogle Scholar
  34. Millán MM, Salvador R, Mantilla E (1997) Photooxidant dynamics in the Mediterranean basin in summer: results from European research projects. J Geophys Res 102(D7):8811–8823CrossRefGoogle Scholar
  35. Minguillon MC, Monfort E, Querol X, Alastuey A, Celades I, Miro JV (2009) Effect of ceramic industrial particulate emission control on key components of ambient PM(10). J Environ Manage 90:2558–2567CrossRefGoogle Scholar
  36. Navas-Acien A, Sharrett AR, Silbergeld EK, Schwartz BS, Nachman KE, Burke TA et al (2005) Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. Am J Epidemiol 162:1037–1049CrossRefGoogle Scholar
  37. Pacyna EG, Pacyna JM, Fudala J, Strzelecka-Jastrzab E, Hlawiczka S, Panasiuk D et al (2007) Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmos Environ 41:8557–8566CrossRefGoogle Scholar
  38. Pallares S, Vicente AB, Jordan MM, Sanfeliu T (2007) Study of the levels of concentration of As, Cd and Ni in a ceramic cluster. Water Air Soil Pollut 180:51–64CrossRefGoogle Scholar
  39. Putaud JP, Raes F, Van Dingenen R, Bruggemann E, Facchini MC, Decesari S et al (2004) European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38:2579–2595CrossRefGoogle Scholar
  40. Querol-Balaguer MA, Delgado-Saborit JM, Ramos-Pino F, Amigó-Descarrega JM, Esteve-Cano V (2004) Chemical characterization of PM10 airborne particulate matter at the ceramic cluster of Castellon (Spain). Geophys Res Lett 6:6108Google Scholar
  41. Querol X, Alastuey A, Moreno T, Viana MM, Castillo S, Pey J et al (2008) Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmos Environ 42:3964–3979CrossRefGoogle Scholar
  42. Querol X, Alastuey A, Rodriguez S, Plana F, Mantilla E, Ruiz CR (2001) Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmos Environ 35:845–858CrossRefGoogle Scholar
  43. Querol X, Alastuey A, Rodriguez S, Viana MM, Artinano B, Salvador P et al (2004a) Levels of particulate matter in rural, urban and industrial sites in Spain. Sci Total Environ 334:359–376CrossRefGoogle Scholar
  44. Querol X, Alastuey A, Ruiz CR, Artinano B, Hansson HC, Harrison RM et al (2004b) Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos Environ 38:6547–6555CrossRefGoogle Scholar
  45. Querol X, Minguillon MC, Alastuey A, Monfort E, Mantilla E, Sanz MJ et al (2007) Impact of the implementation of PM abatement technology on the ambient air levels of metals in a highly industrialised area. Atmos Environ 41:1026–1040CrossRefGoogle Scholar
  46. Rampazzo G, Masiol M, Visin F, Rampado E, Pavoni B (2008) Geochemical characterization of PM10 emitted by glass factories in Murano, Venice (Italy). Chemosphere 71:2068–2075CrossRefGoogle Scholar
  47. Roy P, Saha A (2002) Metabolism and toxicity of arsenic: a human carcinogen. Curr Sci 82:38–45Google Scholar
  48. Sanchez-Rodas D, Sanchez de la Campa A, Oliveira V, de la Rosa J (2012) Health implications of the distribution of arsenic species in airborne particulate matter. J Inorg Biochem 108:112–114Google Scholar
  49. Sanchez de la Campa AM, de la Rosa J, Gonzalez-Castanedo Y, Fernandez-Camacho R, Alastuey A, Querol X et al (2011) Levels and chemical composition of pm in a city near a large Cu-smelter in Spain. J Environ Monit 13:1276–1287Google Scholar
  50. Sanchez de la Campa AM, de la Rosa JD, Sanchez-Rodas D, Oliveira V, Alastuey A, Querol X et al (2008) Arsenic speciation study of PM2.5 in an urban area near a copper smelter. Atmos Environ 42:6487–6495Google Scholar
  51. Santacatalina M, Yubero E, Mantilla E, Carratlá A (2011) Relevance of the economic crisis in chemical PM10 changes in a semi-arid industrial environment. Environ Monit Assess 184:6827–6844CrossRefGoogle Scholar
  52. Tsopelas F, Tsakanika L-A, Ochsenkuehn-Petropoulou M (2008) Extraction of arsenic species from airborne particulate filters—application to an industrial area of Greece. Microchem J 89:165–170CrossRefGoogle Scholar
  53. Vahidnia A, Van der Voet GB, de Wolf FA (2007) Arsenic neurotoxicity—a review. Hum Exp Toxicol 26:823–832CrossRefGoogle Scholar
  54. Vickery W, Moreno A, Monfort E (1998) Influencia de las materias primas borácicas en las emisiones de los hornos de fusión de fritas. Qualicer 98:205–214Google Scholar
  55. von Schneidemesser E, Stone EA, Quraishi TA, Shafer MM, Schauer JJ (2010) Toxic metals in the atmosphere in Lahore, Pakistan. Sci Total Environ 408:1640–1648CrossRefGoogle Scholar
  56. WHO (2000) Air quality guidelines for Europe. WHO Regional Office for Europe CopenhagenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. R. García-Aleix
    • 1
  • J. M. Delgado-Saborit
    • 2
  • G. Verdú-Martín
    • 1
  • J. M. Amigó-Descarrega
    • 3
  • V. Esteve-Cano
    • 4
  1. 1.Departamento de Ingeniería Química y NuclearUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental SciencesUniversity of BirminghamBirminghamUK
  3. 3.Departamento de GeologíaUniversitat de ValènciaBurjassotSpain
  4. 4.Departamento de Química Inorgánica y OrgánicaUniversitat Jaume ICastellón de la PlanaSpain

Personalised recommendations