Advertisement

Environmental Science and Pollution Research

, Volume 20, Issue 12, pp 9044–9056 | Cite as

Effect of water quality and confounding factors on digestive enzyme activities in Gammarus fossarum

  • L. CharronEmail author
  • O. Geffard
  • A. Chaumot
  • R. Coulaud
  • H. Queau
  • A. Geffard
  • O. Dedourge-Geffard
Research Article

Abstract

The feeding activity and subsequent assimilation of the products resulting from food digestion allow organisms to obtain energy for growth, maintenance and reproduction. Among these biological parameters, we studied digestive enzymes (amylase, cellulase and trypsin) in Gammarus fossarum to assess the impact of contaminants on their access to energy resources. However, to enable objective assessment of a toxic effect of decreased water quality on an organisms’ digestive capacity, it is necessary to establish reference values based on its natural variability as a function of changing biotic and abiotic factors. To limit the confounding influence of biotic factors, a caging approach with calibrated male organisms from the same population was used. This study applied an in situ deployment at 23 sites of the Rhone basin rivers, complemented by a laboratory experiment assessing the influence of two abiotic factors (temperature and conductivity). The results showed a small effect of conductivity on cellulase activity and a significant effect of temperature on digestive enzyme activity but only at the lowest temperature (7 °C). The experimental conditions allowed us to define an environmental reference value for digestive enzyme activities to select sites where the quality of the water impacted the digestive capacity of the organisms. In addition to the feeding rate, this study showed the relevance of digestive enzymes as biomarkers to be used as an early warning tool to reflect organisms’ health and the chemical quality of aquatic ecosystems.

Keywords

Biomarkers Invertebrate Caging Amylase Cellulase Trypsin Temperature Conductivity 

Abbreviations

IDEA

Inhibition rate of digestive enzyme activity

Notes

Acknowledgements

This research program was financially supported by the ANR CESA program GAMMA 021 02 “Variability–adaptation–diversity and ecotoxicology in gammarids” (2012–2015), and the PIREN-Seine Program. The authors sincerely thank the Elsevier site for the English revision.

References

  1. Albentosa M, Moyano FJ (2008) Influence of nutritional stress on digestive enzyme activities in juveniles of two marine clam species, Ruditapes decussatus and Venerupis pullastra. J Sea Res 59:249–258CrossRefGoogle Scholar
  2. Allen Y, Calow P, Baird DJ (1995) A mechanistic model of contaminant induced feeding inhibition in Daphnia magna. Environ Toxicol Chem 14:1625–1630Google Scholar
  3. Barfield ML, Farris JL, Black MC (2001) Biomarker and bioaccumulation responses of Asian clams exposed to aqueous cadmium. J Toxicol Environ Health Part A 63:495–510CrossRefGoogle Scholar
  4. Bärlocher F, Porter CW (1986) Digestive enzymes and feeding strategies of three stream invertebrates. J North Am Benthol Soc 5:58–66CrossRefGoogle Scholar
  5. Besse JP, Coquery M, Lopes C, Chaumot A, Budzinski H, Labadie P, Geffard O (2013) Caged Gammarus fossarum (crustacea) as a robust tool for the characterization of bioavailable contamination levels in continental waters. Toward the determination of threshold values. Water Res 47:650–660CrossRefGoogle Scholar
  6. Borowsky R, Guarna MM (1989) Excess amylase in Gammarus palustris (Crustacea: Amphipoda); its release into and possible roles in the environment. Mar Biol (Berl) 101:529–534CrossRefGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  8. Bundschuh M, Zubrod JP, Schulz R (2011) The functional and physiological status of Gammarus fossarum (Crustacea; Amphipoda) exposed to secondary treated wastewater. Environ Pollut 159:244–249CrossRefGoogle Scholar
  9. Chamier A-C, Willoughby LG (1986) The role of fungi in the diet of the amphipod Gammarus pulex (L.): an enzymatic study. Freshw Biol 16:197–208CrossRefGoogle Scholar
  10. Chapman PM (2007) Determining when contamination is pollution—weight of evidence determinations for sediments and effluents. Environ Int 33:492–501CrossRefGoogle Scholar
  11. Chapman PM, Wang F, Janssen CR, Goulet RR, Kamunde CN (2003) Conducting ecological risk assessments of inorganic metals and metalloids: current status. Hum Ecol Risk Assess 9:641–697CrossRefGoogle Scholar
  12. Chen Z, Mayer LM (1998) Digestive proteases of the lugworm (Arenicola marina) inhibited by Cu from contaminated sediments. Environ Toxicol Chem 17:433–438Google Scholar
  13. Chen Z, Mayer LM, Weston DP, Bock MJ, Jumars PA (2002) Inhibition of digestive enzyme activities by copper in the guts of various marine benthic invertebrates. Environ Toxicol Chem 21:1243–1248CrossRefGoogle Scholar
  14. Coulaud R, Geffard O, Xuereb B, Lacaze E, Quéaau H, Garric J, Charles S, Chaumot A (2011) In situ feeding assay with Gammarus fossarum (Crustacea): modelling the influence of confounding factors to improve water quality biomonitoring. Water Res 45:6417–6429CrossRefGoogle Scholar
  15. De Coen WM, Janssen CR (1997a) The use of biomarkers in Daphnia magna toxicity testing. II. Digestive enzyme activity in Daphnia magna exposed to sublethal concentrations of cadmium, chromium and mercury. Chemosphere 35:1053–1067CrossRefGoogle Scholar
  16. De Coen WM, Janssen CR (1997b) The use of biomarkers in Daphnia magna toxicity testing. IV. Cellular energy allocation: a new methodology to assess the energy budget of toxicant-stressed Daphnia populations. J Aquat Ecosyst Stress Recov 6:43–55CrossRefGoogle Scholar
  17. De Coen WM, Janssen CR (1998) The use of biomarkers in Daphnia magna toxicity testing. I. The digestive physiology of daphnids exposed to toxic stress. Hydrobiologia 367:199–209CrossRefGoogle Scholar
  18. De Coen WM, Vangheluwe ML, Janssen CR (1998) The use of biomarkers in Daphnia magna toxicity testing. III. Rapid toxicity testing of pure chemicals and sediment pore waters using ingestion and digestive enzyme activity. Chemosphere 37:2677–2694CrossRefGoogle Scholar
  19. De Schamphelaere KAC, Forrez I, Dierckens K, Sorgeloos P, Janssen CR (2007) Chronic toxicity of dietary copper to Daphnia magna. Aquat Toxicol 81:409–418CrossRefGoogle Scholar
  20. Dedourge-Geffard O, Palais F, Biagianti-Risbourg S, Geffard O, Geffard A (2009) Effects of metals on feeding rate and digestive enzymes in Gammarus fossarum: an in situ experiment. Chemosphere 77:1569–1576CrossRefGoogle Scholar
  21. Dedourge-Geffard O, Palais F, Geffard A, Amiard-Triquet C (2012) Origin of energy metabolism impairments. In: Amiard-Triquet C, Amiard JC, Rainbow P (eds) Ecological biomarkers—indicators of ecotoxicological effects. CRC Press, Taylor & Francis Group, Boca Raton, pp 279–306CrossRefGoogle Scholar
  22. R Development Core Team (2008) R: a language and environment for statistical computing, R Foundation for Statistical ComputingGoogle Scholar
  23. Douhri H, Sayah F (2009) The use of enzymatic biomarkers in two marine invertebrates Nereis diversicolor and Patella vulgata for the biomonitoring of Tangier's bay (Morocco). Ecotoxicol Environ Saf 72:394–399CrossRefGoogle Scholar
  24. Essedaoui A, Sif J, Kerambrun P (1998) Effet du cadmium sur l’activité de l’α-amylase chez Mytilus galloprovincialis: effect of cadmium on α-amylase activity in Mytilus galloprovincialis. Marine life 8:51–61Google Scholar
  25. Forrow DM, Maltby L (2000) Toward a mechanistic understanding of contaminant-induced changes in detritus processing in streams: direct and indirect effects on detritivore feeding. Environ Toxicol Chem 19:2100–2106CrossRefGoogle Scholar
  26. Galgani F, Benyamin Y, Van Worhmoudt A, Cecaldi J (1983) Variations des activites digestives en fonction des facteurs du milieu chez les crustaces. Bases biologiques de l’aquaculture 1:277–292Google Scholar
  27. Garcia-Carreño FL, Haard NF (1993) Characterization of proteinase classes in langostilla (Pleuroncodes planipes) and crayfish (Pacifastacus Planipes) extracts. J Food Biochem 17:97–113CrossRefGoogle Scholar
  28. Geffard A, Quéau H, Dedourge O, Biagianti-Risboug S, Geffard O (2007) Influence of biotic and abiotic factors on metallothionein level in Gammarus pulex. Comp Biochem Physiol Part C Toxicol Pharmacol 145:632–640CrossRefGoogle Scholar
  29. Gismondi E, Beisel J-N, Cossu-Leguille C (2012) Influence of gender and season on reduced glutathione concentration and energy reserves of Gammarus roeseli. Environ Res. doi: 10.1016/j.envres.2012.06.004 Google Scholar
  30. Guarna MM, Borowsky RL (1995) Biochemical properties of amylase isozymes from Gammarus palustris. A comparative study. Comp Biochem Physiol Part B Biochem Mol Biol 112:619–628CrossRefGoogle Scholar
  31. Hagger JA, Jones MB, Leonard DRP, Owen R, Galloway TS (2006) Biomarkers and integrated environmental risk assessment: are there more questions than answers? Integr Environ Assess Manag 2:312–329CrossRefGoogle Scholar
  32. Hyne RV, Maher WA (2003) Invertebrate biomarkers: links to toxicosis that predict population decline. Ecotoxicol Environ Saf 54:366–374CrossRefGoogle Scholar
  33. Ibarrola I, Larretxea X, Iglesias JIP, Urrutia MB, Navarro E (1998) Seasonal variation of digestive enzyme activities in the digestive gland and the crystalline style of the common cockle Cerastoderma edule. Comp Biochem Physiol Part A Mol Integr Physiol 121:25–34CrossRefGoogle Scholar
  34. Ibarrola I, Etxeberria M, Iglesias JIP, Urrutia MB, Angulo E (2000) Acute and acclimated digestive responses of the cockle Cerastoderma edule (L.) to changes in the food quality and quantity: II. Enzymatic, cellular and tissular responses of the digestive gland. J Exp Mar Biol Ecol 252:199–219CrossRefGoogle Scholar
  35. Johnston D, Freeman J (2005) Dietary preference and digestive enzyme activities as indicators of trophic resource utilization by six species of crab. Biol Bull 208:36–46CrossRefGoogle Scholar
  36. Johnston M, Johnston D, Richardson A (2005) Digestive capabilities reflect the major food sources in three species of talitrid amphipods. Comp Biochem Physiol Part B Biochem Mol Biol 140:251–257CrossRefGoogle Scholar
  37. Kuz’mina VV (1996) Influence of age on digestive enzyme activity in some freshwater teleosts. Aquaculture 148:25–37CrossRefGoogle Scholar
  38. Lacaze E, Devaux A, Mons R, Bony S, Garric J, Geffard A, Geffard O (2011) DNA damage in caged Gammarus fossarum amphipods: a tool for freshwater genotoxicity assessment. Environ Pollut 159:1682–1691CrossRefGoogle Scholar
  39. Le Bihan E, Perrin A, Koueta N (2004) Development of a bioassay from isolated digestive gland cells of the cuttlefish Sepia officinalis L. (Mollusca Cephalopoda): effect of Cu, Zn and Ag on enzyme activities and cell viability. J Exp Mar Biol Ecol 309:47–66CrossRefGoogle Scholar
  40. Lebrun J, Perret M, Geffard A, Gourlay-Francé C (2012) Modelling copper bioaccumulation in Gammarus pulex and alterations of digestive metabolism. Ecotoxicology 21:2022–2030CrossRefGoogle Scholar
  41. Li N, Zhao Y, Yang J (2008) Effects of water-borne copper on digestive and metabolic enzymes of the giant freshwater prawn Macrobrachium rosenbergii. Arch Environ Contam Toxicol 55:86–93CrossRefGoogle Scholar
  42. Macneil C, Dick JTA, Elwood RW (1997) The Trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): problems and perspectives concerning the fonctional feeding group concept. Biol Rev 72:349–364CrossRefGoogle Scholar
  43. Maltby L, Naylor C, Calow P (1990) Field deployment of a scope for growth assay involving Gammarus pulex, a freshwater benthic invertebrate. Ecotoxicol Environ Saf 19:292–300CrossRefGoogle Scholar
  44. Maltby L, Clayton SA, Wood RM, McLoughlin N (2002) Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: robustness, responsiveness, and relevance. Environ Toxicol Chem 21:361–368Google Scholar
  45. McGrath CC, Matthews RA (2000) Cellulase activity in the freshwater amphipod Gammarus lacustris. J North Am Benthol Soc 19:298–307CrossRefGoogle Scholar
  46. Meyer JS, Adams WJ, Brix KV, Luoma SN, Mount DR, Stubblefield WA, Wood CM (2005) Toxicity of dietborne metals to aquatic organisms. SETAC, Pensacola, FI, USAGoogle Scholar
  47. Monk DC (1977) The digestion of cellulose and other dietary components, and pH of the gut in the amphipod Gammarus pulex (L.). Freshw Biol 7:431–440CrossRefGoogle Scholar
  48. Mukherjee S, Bhattacharya S (1977) Variations in the hepatopancreatic α-amylase activity in fishes exposed to some industrial pollutants. Water Res 11:71–74CrossRefGoogle Scholar
  49. Palais F, Jubeaux G, Dedourge-Geffard O, Giambérini L, Biagianti-Risbourg S, Geffard A (2010) Amylolytic and cellulolytic activities in the cristalline style and the digestive diverticulae of the freshwater bivalve Dreissena polymorpha (Pallas, 1771). Molluscan Res 30:29–36Google Scholar
  50. Palais F, Dedourge-Geffard O, Beaudon A, Pain-Devin S, Trapp J, Geffard O, Noury P, Gourlay-Francé C, Uher E, Mouneyrac C, Biagianti-Risbourg S, Geffard A (2012) One-year monitoring of core biomarker and digestive enzyme responses in transplanted zebra mussels (Dreissena polymorpha). Ecotoxicology 21:888–905CrossRefGoogle Scholar
  51. Perera E, Moyano FJ, Diaz M, Perdomo-Morales R, Montero-Alejo V, Rodriguez-Viera L, Alonso E, Carrillo O, Galich GS (2008) Changes in digestive enzymes through developmental and molt stages in the spiny lobster, Panulirus argus. Comp Biochem Physiol Part B Biochem Mol Biol 151:250–256CrossRefGoogle Scholar
  52. Pöckl M (1992) Effects of temperature, age and body size on moulting and growth in the freshwater amphipods Gammarus fossarum and G. roeseli. Freshw Biol 27:211–225CrossRefGoogle Scholar
  53. Pöckl M, Webb BW, Sutcliffe DW (2003) Life history and reproductive capacity of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda) under naturally fluctuating water temperatures: a simulation study. Freshw Biol 48:53–66CrossRefGoogle Scholar
  54. Reddy PS, Fingerman M (1994) Effect of cadmium chloride on amylase activity in the red swamp crayfish, Procambarus clarkii. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 109:309–314CrossRefGoogle Scholar
  55. Sanchez-Paz A, Garcìa-Carreño F, Muhlia-Almazan A, Peregrino-Uriarte AB, Hernandez-Lopez J, Yepiz-Plascencia G (2006) Usage of energy reserves in crustaceans during starvation: status and future directions. Insect Biochem Mol Biol 36:241–249CrossRefGoogle Scholar
  56. Sornom P, Felten V, Médoc V, Sroda S, Rousselle P, Beisel J-N (2010) Effect of gender on physiological and behavioural responses of Gammarus roeseli (Crustacea Amphipoda) to salinity and temperature. Environ Pollut 158:1288–1295CrossRefGoogle Scholar
  57. Sroda S, Cossu-Leguille C (2011) Seasonal variability of antioxidant biomarkers and energy reserves in the freshwater gammarid Gammarus roeseli. Chemosphere 83:538–544CrossRefGoogle Scholar
  58. Trellu J, Ceccaldi HJ (1980a) Influence de l’intensité lumineuse sur quelques activités enzymatiques chez Palaemon serratus. Biochem Syst Ecol 8:181–191CrossRefGoogle Scholar
  59. Trellu J, Ceccaldi HJ (1980b) Influence de la température sur quelques activités enzymatiques chez Palaemon serratus. Biochem Syst Ecol 8:171–179CrossRefGoogle Scholar
  60. Van Wormhoudt A (1977) Activités enzymatiques digestives chez Palaemon serratus: variations annuelles de l’acrophase des rythmes circadiens. Biochem Syst Ecol 5:301–307CrossRefGoogle Scholar
  61. Van Wormhoudt A, Malcoste R (1976) Influence d’éclairements brefs, à différentes longeurs d’onde, sur les variations circadiennes des activitées enzymatiques digestives chez Palaemon serratus (Crustacea, Natantia). J Interdiscip Cycle Res 7:101–111CrossRefGoogle Scholar
  62. Xuereb B, Chaumot A, Mons R, Garric J, Geffard O (2009) Acetylcholinesterase activity in Gammarus fossarum (Crustacea Amphipoda): intrinsic variability, reference levels, and a reliable tool for field surveys. Aquat Toxicol 93:225–233CrossRefGoogle Scholar
  63. Yan T, Teo LH, Sin YM (1996) Effects of metals on α-amylase activity in the digestive gland of the green mussel, Perna viridis. Bull Environ Contam Toxicol 56:677–682CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • L. Charron
    • 1
    Email author
  • O. Geffard
    • 2
  • A. Chaumot
    • 2
  • R. Coulaud
    • 2
  • H. Queau
    • 2
  • A. Geffard
    • 1
  • O. Dedourge-Geffard
    • 1
  1. 1.Université Reims Champagne Ardenne, EA 4689, Unité Interactions Animal-Environnement (EA 4689)UFR Sciences Exactes et NaturellesReims Cedex 2France
  2. 2.Irstea, Lyon, Laboratoire d’écotoxicologieUnité de Recherche Milieux Aquatiques, Ecologie et Pollutions (MAEP)Villeurbanne CedexFrance

Personalised recommendations