Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of copper sulfate on growth and physiological responses of Limoniastrum monopetalum

  • 458 Accesses

  • 19 Citations

Abstract

A glasshouse study of the coastal shrub Limoniastrum monopetalum was carried out to evaluate its tolerance and capacity to accumulate copper. We investigate the effects of Cu from 0 to 60 mmol l−1 on the growth, photosynthetic apparatus, and nutrient uptake of L. monopetalum, by measuring gas exchange, chlorophyll fluorescence parameters, photosynthetic pigments, and total copper, nitrogen, phosphorus, sulfur, calcium, and magnesium content in the plant tissues. Although L. monopetalum did not survive at 60 mmol l−1 Cu, the species demonstrated a high tolerance to Cu-induced stress, since all plants survived external Cu concentrations of up to 35 mmol l−1 and displayed similar growth in the Cu-enriched medium as in the control treatment of up to the external level of 15 mmol Cu l−1 (1,000 mg Cu l−1). The reduced growth registered in plants exposed to 35 mmol Cu l−1 can be attributed to reduced photosynthetic carbon assimilation associated with the adverse effect of the metal on the photochemical apparatus and a reduction in the absorption of essential nutrients. Copper tolerance was associated with the capacity of the plant to accumulate the metal in its roots and effectively prevent its translocation to photosynthetic tissues. L. monopetalum has the characteristics of a Cu-excluder plant and could be used in the revegetation of Cu-contaminated soils.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

A :

Net photosynthetic rate

Chl a :

Chlorophyll a

Chl b :

Chlorophyll b

C i :

Intercellular CO2 concentration

Cx + c :

Carotenoids

F 0 :

Minimal fluorescence level in the dark-adapted state

F m :

Maximal fluorescence level in the dark-adapted state

F s :

Steady state fluorescence yield

F v :

Variable fluorescence level in the dark-adapted state

F v/F m :

Maximum quantum efficiency of PSII photochemistry

ΦPSII:

Quantum efficiency of PSII

Gs:

Stomatal conductance

NPQ:

Non-photochemical quenching

RGR:

Relative growth rate

References

  1. Baszynski T, Krol M, Krupa Z, Ruszkowska M, Wojcieska U, Wolinska D (1982) Photosynthetic apparatus of spinach exposed to excess copper. Z Pflanzenphysiol 108:385–395

  2. Bibi M, Hussain M (2005) Effect of copper and lead on photosynthesis and plant pigment in black gram [Vigna mungo (L.) Hepper]. B Environ Contam Tox 74:1126–1133

  3. Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

  4. Caçador I, Vale C, Catarino F (2000) Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root–sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes. Mar Environ Res 49:279–290

  5. Cambrollé J, Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Pollut Bull 56:2037–2042

  6. Cambrollé J, Mateos-Naranjo E, Redondo-Gómez S, Luque T, Figueroa ME (2011) Growth, reproductive and photosynthetic responses to copper in the yellow-horned poppy, Glaucium flavum Crantz. Environ Exp Bot 71:57–64

  7. Cambrollé J, Mancilla-Leytón JM, Muñoz-Vallés S, Luque T, Figueroa ME (2012) Tolerance and accumulation of copper in the salt-marsh shrub Halimione portulacoides. Mar Pollut Bull 64:721–728

  8. Cheng S (2003) Heavy metals in plants and phytoremediation. Environ Sci Pollut Res 10:335–340

  9. Chipeng KF, Hermans C, Colinet G, Faucon MP, Ngongo Luhembwe M, Meerts P, Verbruggen N (2010) Copper tolerance in the cuprophyte Haumanias-trum katangense (S. Moore) P.A. Duvign. and Plancke. Plant Soil 328:235–244

  10. Dahmani-Muller H, van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238

  11. Ernst WHO, Krauss GJ, Verkleij JAC, Wesenberg D (2008) Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ 31:123–143

  12. Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57:246–273

  13. Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C-3 plants: stomatal and non-stomatal limitations revisited. Ann Bot Lond 89:183–189

  14. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

  15. Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO (2011) Plant metallothioneins—metal chelators with ROS scavenging activity? Plant Biol 13:225–232

  16. Hoagland D, Arnon DI (1938) The water culture method for growing plants without soil. Calif AES Bull 347:1–39

  17. Hormaetxe K, Becerril JM, Hernández A, Esteban R, García-Plazaola JI (2006) Plasticity of photoprotective mechanisms of Buxus sempervirens L. leaves in response to extreme temperatures. Plant Biol 9:59–68

  18. Hussein HS, Terry N (2002) Phytomonitoring the unique colonization of oil-contaminated saline environment by Limoniastrum monopetalum (L.) Boiss in Egypt. Environ Int 28:127–135

  19. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC, Florida

  20. Krivosheeva A, Tao DL, Ottander C, Wingsle G, Dube SL, Öquist G (1996) Cold acclimated and photoinhibition in Scots pine. Planta 200:296–305

  21. Küpper H, Setlik I, Spiller M, Küpper FC, Prásil O (2002) Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol 38:429–441

  22. Lequeux H, Hermans C, Lutz S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Bioch 48:673–682

  23. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

  24. Lidon F, Henriques FS (1991) Limiting step on photosynthesis of rice plants treated with varying copper levels. J Plant Physiol 138:115–118

  25. Madejón P, Ramírez-Benítez JE, Corrales I, Barceló J, Poschenrieder C (2009) Copper-induced oxidative damage and enhanced antioxidant defenses in the root apex of maize cultivars differing in Cu tolerance. Environ Exp Bot 67:415–420

  26. Marschner H (1999) Mineral nutrition in higher plants. Academic, London

  27. Mateos-Naranjo E, Redondo-Gómez S, Cambrollé J, Figueroa ME (2008) Growth and photosynthetic responses to copper stress of an invasive cordgrass, Spartina densiflora. Mar Environ Res 66:459–465

  28. Matthews DJ, Moran BM, Otte ML (2005) Screening the wetland plant species Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc and comparison with Eriophorum angustifolium and Festuca rubra merlin. Environ Pollut 134:343–351

  29. Maxwell K, Johnson GN (2000) Chorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

  30. Nelson CH, Lamothe PJ (1993) Heavy metal anomalies in the Tinto and Odiel River and estuary system, Spain. Estuaries 16:496–511

  31. Neves JP, Ferreira LF, Simões MP, Gazarini LC (2007) Primary production and nutrient content in two salt marsh species, Atriplex portulacoides L. and Limoniastrum monopetalum L., in southern Portugal. Estuaries and Coasts 30:459–468

  32. Ordiales-Plaza R (2000) ‘Midebmp, V.4.2.’. Estación Experimental de Zonas Áridas CSIC, Almería

  33. Paschke MW, Redente EF (2002) Copper toxicity thresholds for important restoration grass species of the western United States. Environ Toxicol Chem 21:2692–2697

  34. Razinger J, Dermastia M, Drinovec L, Drobne D, Zrimec A, Koce JD (2007) Antioxidative responses of duckweed (Lemna minor L.) to short-term copper exposure. Env Sci Pollut Res 14:194–201

  35. Redondo-Gómez S, Wharmby C, Castillo JM, Mateos-Naranjo E, Luque CJ, de Cires A, Luque T, Davy AJ, Figueroa ME (2006) Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiol Plantarum 128:116–124

  36. Redondo-Gómez S, Mateos-Naranjo E, Davy AJ, Fernández-Muñoz F, Castellanos E, Luque T, Figueroa ME (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100:555–563

  37. Redondo-Gómez S, Mateos-Naranjo E, Vecino-Bueno I, Feldman SR (2011) Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis. J Hazard Mater 185:862–869

  38. Sáinz A, Ruiz F (2006) Influence of the very polluted inputs of the Tinto-Odiel system on the adjacent littoral sediments of southwestern spain: a statistical approach. Chemosphere 62:1612–1622

  39. Simões MP, Calado ML, Madeira M, Gazarini LC (2011) Decomposition and nutrient release in halophytes of a Mediterranean salt marsh. Aquat Bot 94:119–126

  40. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1972) Flora Europaea, vol 3. Cambridge University Press, London

  41. Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

  42. Vassilev A, Lidon FC, Do Ceu Matos M, Ramalho JC, Yordanov I (2002) Photosynthetic performance and some nutrients content in cadmium and copper treated barley plants. J Plant Nutr 25:2343–2360

  43. Von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:377–387

  44. Wallace A, Romney EM, Alexander GV, Kinnear J (1977) Phytotoxicity and some interactions of the essential trace metals iron, manganese, molybdenum, zinc, copper and boron. Commun Soil Sci Plan 8:741–750

  45. Xiong Z-T, Liu C, Geng B (2006) Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotox Environ Safe 64:273–280

Download references

Acknowledgments

We thank the University of Seville for a research contract (IV Plan Propio de Investigación, research projects ref. 5/2012) and the Spanish Ministry of Science and Innovation (project CTM2008-04453). We are also grateful to Mr. K. MacMillan for revision of the English version of the manuscript, the Seville University Glasshouse General Service for their collaboration, and the two anonymous referees for valuable comments and suggestions on a previous draft of this paper.

Author information

Correspondence to J. Cambrollé.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cambrollé, J., Mancilla-Leytón, J.M., Muñoz-Vallés, S. et al. Effects of copper sulfate on growth and physiological responses of Limoniastrum monopetalum . Environ Sci Pollut Res 20, 8839–8847 (2013). https://doi.org/10.1007/s11356-013-1833-4

Download citation

Keywords

  • Copper
  • Growth
  • Limoniastrum monopetalum
  • Photosynthesis
  • Phytoremediation
  • Tolerance