Environmental Science and Pollution Research

, Volume 20, Issue 12, pp 8629–8635 | Cite as

Investigation of uranium binding forms in selected German mineral waters

  • Alfatih A. A. OsmanEmail author
  • Gerhard Geipel
  • Gert Bernhard
  • Eckhard Worch
Research Article


Cryogenic time-resolved laser-induced fluorescence spectroscopy was successfully used to identify uranium binding forms in selected German mineral waters of extremely low uranium concentrations (<2.0 μg/L). The measurements were performed at a low temperature of 153 K. The spectroscopic data showed a prevalence of aquatic species Ca2UO2(CO3)3 in all investigated waters, while other uranyl–carbonate complexes, viz, UO2CO3(aq) and UO2(CO3)2 2−, only existed as minor species. The pH value, alkalinity (CO3 2−), and the main water inorganic constituents, specifically the Ca2+ concentration, showed a clear influence on uranium speciation. Speciation modeling was performed using the most recent thermodynamic data for aqueous complexes of uranium. The modeling results for the main uranium binding form in the investigated waters indicated a good agreement with the spectroscopy measurements.


Mineral waters Uranium Cryo-TRLFS Binding forms Thermodynamic modeling 



This work was funded by the German Academic Exchange Service (DAAD). The authors would like to thank C. Eckardt, U. Schaefer, and A. Ritter for providing analytical data of the mineral waters. We are grateful to C. Joseph for helping with EQ3/6 calculations.

Supplementary material

11356_2013_1822_MOESM1_ESM.pdf (57 kb)
Fig. S1 Luminescence decay curves for U(VI) in all investigated mineral waters (PDF 56 kb)
11356_2013_1822_MOESM2_ESM.pdf (32 kb)
Fig. S2 Analysis of individual emission peaks as a function of delay time in a Extalerquelle still water and b Teinacher classic water (PDF 31 kb)
11356_2013_1822_MOESM3_ESM.pdf (18 kb)
Table S1 Some important formation constants for aqueous uranyl complexes used for thermodynamic modeling of mineral waters (PDF 17 kb)


  1. Bernhard G, Geipel G, Brendler V, Nitsche H (1996) Speciation of uranium in seepage waters of a mine tailings pile studied by time resolved laser induced fluorescence spectroscopy. Radiochim Acta 74:87–91Google Scholar
  2. Bernhard G, Geipel G, Brendler V, Nitsche H (1998) Uranium speciation in waters of different uranium mining areas. J Alloys Compd 271–273:201–205CrossRefGoogle Scholar
  3. Bernhard G, Geipel G, Reich T, Brendler V, Amayri S, Nitsche H (2001) Uranyl(VI) carbonate complex formation: validation of the Ca2UO2(CO3)3(aq.) species. Radiochim Acta 89:511–518CrossRefGoogle Scholar
  4. BfR (Bundesanstalt für Risikobewertung) und BfS (Bundesanstalt für Strahlenschutz) (2007) BfR empfiehlt die Ableitung eines europäischen Höchstwertes für Uran in Trink- und Mineralwasser. Gemeinsame Stellungnahme Nr. 020/2007 des BfS und des BfR vom 5. April 2007Google Scholar
  5. Birke M, Rauch U, Lorenz H, Kringel R (2010) Distribution of uranium in German bottled and tap water. J Geochem Explor 107:272–282CrossRefGoogle Scholar
  6. Carriere M, Avoscan L, Collins R, Carrot F, Khodja H, Ansoborlo E, Gouget B (2004) Influence of uranium speciation on normal rat kidney (NRK-52E) proximal cell cytotoxicity. Chem Res Toxicol 17:446–452CrossRefGoogle Scholar
  7. Carriere M, Khodja H, Avoscan L, Carrot F, Gouget B (2005) Uranium(VI) complexation in cell culture medium: influence of speciation on normal rat kidney (NRK-52E) cell accumulation. Radiochim Acta 93:691–697CrossRefGoogle Scholar
  8. Dong W, Brooks SC (2006) Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+, Ca2+, Sr2+, and Ba2+) using anion exchange method. Environ Sci Technol 40:4689–4695CrossRefGoogle Scholar
  9. DVGW (Deutscher Verein des Gas- und Wasserfaches) (2011) Erste Verordnung zur Änderung der Trinkwasserverordnung vom 3. Mai 2011. Bundesgesetzblatt Jahrgang 2011 Teil Nr. 21, ausgegeben zu Bonn am 11, Mai 2011Google Scholar
  10. Geipel G (2006) Laser-induced fluorescence spectroscopy. In: Vij DR (ed) Handbook of applied solid state spectroscopy. Springer, USA, pp 577–593CrossRefGoogle Scholar
  11. Gilman AP, Villeneuve DC, Secours VE, Yagminas AP, Tracy BL, Quinn JM, Valli VE, Willes RJ, Moss MA (1998a) Uranyl nitrate: 28-day and 91-day toxicity studies in the Sprague–Dawley Rat. Toxicol Sci 41:117–128Google Scholar
  12. Gilman AP, Moss MA, Villeneuve DC, Secours VE, Yagminas AP, Tracy BL, Quinn JM, Long J, Valli VE, Willes RJ (1998b) Uranyl nitrate: 91-day exposure and recovery studies in the New Zealand white rabbit. Toxicol Sci 41:138–151CrossRefGoogle Scholar
  13. Guillaumont R, Fanghaenel T, Neck V, Fuger J, Palmer DA, Grenthe I, Rand MH (2003) Chemical thermodynamics 5, update on the chemical thermodynamics of uranium, neptunium, plutonium, americium, and technetium. Elsevier, AmsterdamGoogle Scholar
  14. Health Canada (2009). Guidelines for Canadian drinking water quality: guideline technical document—radiological parameters. Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario (catalogue no. H128-1/10-614E-PDF).Google Scholar
  15. Prat O, Vercouter T, Ansoborlo E, Fichet P, Perret P, Kurttio P, Salonen L (2009) Uranium speciation in drinking water from drilled wells in southern Finland and its potential links to health effects. Environ Sci Technol 43:3941–3946CrossRefGoogle Scholar
  16. Smidt GA, Hassoun R, Birke M, Erdinger L, Schäf M, Knolle F, Utermann J, Duijnisveld WHM, Birke M, Schnug E (2011) Uranium in German tap and groundwater—occurrence and origins. In: Merkel B, Schipek M (eds) The new uranium mining boom: challenge and lessons learned. Springer, Heidelberg, pp 807–820CrossRefGoogle Scholar
  17. US-EPA (United States Environmental Protection Agency) (2000) 40 CFR parts 9, 141, and 142, national primary drinking water regulations; radionuclides; final rule. Fed Regist 65(236):76708–76753Google Scholar
  18. Wang Z, Zachara JM, Yantasee W, Gassman PL, Liu C, Joly AG (2004) Cryogenic laser induced fluorescence characterization of U(VI) in Hanford Vadose zone pore waters. Environ Sci Technol 38:5591–5597CrossRefGoogle Scholar
  19. WHO (World Health Organization) (2008) Guidelines for drinking-water quality, incorporating the 1st and the 2nd addenda, vol. 1. Recommendations, 3rd edn. WHO, GenevaGoogle Scholar
  20. Wolery TJ (1992) EQ3/6, a software package for the geochemical modeling of aqueous systems, UCRL-MA-110662 part I. Lawrence Livermore National Laboratory, CaliforniaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alfatih A. A. Osman
    • 1
    Email author
  • Gerhard Geipel
    • 1
  • Gert Bernhard
    • 1
  • Eckhard Worch
    • 2
  1. 1.Institute of Resource EcologyHelmholtz-Zentrum Dresden-RossendorfDresdenGermany
  2. 2.Institute of Water ChemistryDresden University of TechnologyDresdenGermany

Personalised recommendations