Environmental Science and Pollution Research

, Volume 20, Issue 11, pp 8031–8044 | Cite as

Perfluorinated compounds affect the function of sex hormone receptors

  • Lisbeth Stigaard Kjeldsen
  • Eva Cecilie Bonefeld-JørgensenEmail author
Nordic Research on Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)


Perfluorinated compounds (PFCs) are a large group of chemicals used in different industrial and commercial applications. Studies have suggested the potential of some PFCs to disrupt endocrine homeostasis, increasing the risk of adverse health effects. This study aimed to elucidate mechanisms behind PFC interference with steroid hormone receptor functions. Seven PFCs [perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA)] were analyzed in vitro for their potential to affect estrogen receptor (ER) and androgen receptor (AR) transactivity as well as aromatase enzyme activity. The PFCs were assessed as single compounds and in an equimolar mixture. PFHxS, PFOS and PFOA significantly induced the ER transactivity, whereas PFHxS, PFOS, PFOA, PFNA and PFDA significantly antagonized the AR activity in a concentration-dependent manner. Moreover, PFDA weakly decreased the aromatase activity at a high test concentration. A mixture effect more than additive was observed on AR function. We conclude that five of the seven PFCs possess the potential in vitro to interfere with the function of the ER and/or the AR. The observed mixture effect emphasizes the importance of considering the combined action of PFCs in future studies to assess related health risks.


Androgen receptor Estrogen receptor Luciferase reporter gene assay Aromatase Perfluorinated compound Perfluoroalkyl acid Endocrine disruptor 





Androgen receptor


Concentration addition


Coefficient of variation


Cytochrome P450




Dimethyl sulfoxide




Estrogen receptor




Lactate dehydrogenase


Lowest observed effect concentration


Maximum observed effect concentration


Perfluoroalkyl acid


Perfluorinated compound






Perfluorohexane sulfonate






Perfluorooctane sulfonate




Persistent organic pollutant


Solvent control



This study was supported by the Danish Strategic Research Council and Aarhus University. We thank lab technician Dorte Olsson for the technical support, performing the ER transactivation bioassays, as well as the aromatase enzyme activity bioassays, and our colleagues at the Centre for Arctic Health for scientific support.

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Andersen HR, Vinggaard AM, Rasmussen TH, Gjermandsen IM, Bonefeld-Jorgensen EC (2002) Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol Appl Pharmacol 179(1):1–12. doi: 10.1006/taap.2001.9347 CrossRefGoogle Scholar
  2. Andersen ME, Butenhoff JL, Chang SC, Farrar DG, Kennedy GL Jr, Lau C, Olsen GW, Seed J, Wallace KB (2008) Perfluoroalkyl acids and related chemistries—toxicokinetics and modes of action. Toxicol Sci 102(1):3–14. doi: 10.1093/toxsci/kfm270 CrossRefGoogle Scholar
  3. Apelberg BJ, Goldman LR, Calafat AM, Herbstman JB, Kuklenyik Z, Heidler J, Needham LL, Halden RU, Witter FR (2007a) Determinants of fetal exposure to polyfluoroalkyl compounds in Baltimore, Maryland. Environ Sci Technol 41(11):3891–3897CrossRefGoogle Scholar
  4. Apelberg BJ, Witter FR, Herbstman JB, Calafat AM, Halden RU, Needham LL, Goldman LR (2007b) Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Heal Perspect 115(11):1670–1676. doi: 10.1289/ehp.10334 CrossRefGoogle Scholar
  5. Benninghoff AD, Bisson WH, Koch DC, Ehresman DJ, Kolluri SK, Williams DE (2011) Estrogen-like activity of perfluoroalkyl acids in vivo and interaction with human and rainbow trout estrogen receptors in vitro. Toxicol Sci 120(1):42–58. doi: 10.1093/toxsci/kfq379 CrossRefGoogle Scholar
  6. Biegel LB, Liu RC, Hurtt ME, Cook JC (1995) Effects of ammonium perfluorooctanoate on Leydig cell function: in vitro, in vivo, and ex vivo studies. Toxicol Appl Pharmacol 134(1):18–25. doi: 10.1006/taap.1995.1164 CrossRefGoogle Scholar
  7. Birkhoj M, Nellemann C, Jarfelt K, Jacobsen H, Andersen HR, Dalgaard M, Vinggaard AM (2004) The combined antiandrogenic effects of five commonly used pesticides. Toxicol Appl Pharmacol 201(1):10–20. doi: 10.1016/j.taap.2004.04.016 CrossRefGoogle Scholar
  8. Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19(4):833–842. doi: 10.1210/me.2004-0486 CrossRefGoogle Scholar
  9. Bonefeld-Jorgensen EC, Grunfeld HT, Gjermandsen IM (2005) Effect of pesticides on estrogen receptor transactivation in vitro: a comparison of stable transfected MVLN and transient transfected MCF-7 cells. Mol Cell Endocrinol 244(1–2):20–30. doi: 10.1016/j.mce.2005.01.017 CrossRefGoogle Scholar
  10. Bonefeld-Jorgensen EC, Long M, Bossi R, Ayotte P, Asmund G, Kruger T, Ghisari M, Mulvad G, Kern P, Nzulumiki P, Dewailly E (2011) Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: a case control study. Env Health 10:88. doi: 10.1186/1476-069X-10-88 CrossRefGoogle Scholar
  11. Bonefeld-Jorgensen EC, Long M, Hofmeister MV, Vinggaard AM (2007) Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: new data and a brief review. Environ Heal Perspect 115(Suppl 1):69–76. doi: 10.1289/ehp.9368 CrossRefGoogle Scholar
  12. Butenhoff JL, Kennedy GL Jr, Frame SR, O’Connor JC, York RG (2004) The reproductive toxicology of ammonium perfluorooctanoate (APFO) in the rat. Toxicology 196(1–2):95–116. doi: 10.1016/j.tox.2003.11.005 CrossRefGoogle Scholar
  13. Cedergreen N, Christensen AM, Kamper A, Kudsk P, Mathiassen SK, Streibig JC, Sorensen H (2008) A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites. Env Toxicol and Chemistry/SETAC 27(7):1621–1632. doi: 10.1897/07-474 CrossRefGoogle Scholar
  14. Cook JC, Murray SM, Frame SR, Hurtt ME (1992) Induction of Leydig cell adenomas by ammonium perfluorooctanoate: a possible endocrine-related mechanism. Toxicol Appl Pharmacol 113(2):209–217CrossRefGoogle Scholar
  15. D’Eon JC, Simpson AJ, Kumar R, Baer AJ, Mabury SA (2010) Determining the molecular interactions of perfluorinated carboxylic acids with human sera and isolated human serum albumin using nuclear magnetic resonance spectroscopy. Env Toxicol and Chem/SETAC 29(8):1678–1688. doi: 10.1002/etc.204 Google Scholar
  16. Dehm SM, Tindall DJ (2007) Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol 21(12):2855–2863. doi: 10.1210/me.2007-0223 CrossRefGoogle Scholar
  17. Demirpence E, Duchesne MJ, Badia E, Gagne D, Pons M (1993) MVLN cells: a bioluminescent MCE-7-derived cell line to study the modulation of estrogenic activity. The J of Steroid Biochem and Molecular Biol 46(3):355–364CrossRefGoogle Scholar
  18. DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR (2011) Immunotoxicity of perfluorinated compounds: recent developments. Toxicol Pathol. doi: 10.1177/0192623311428473 Google Scholar
  19. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68(5):879–887CrossRefGoogle Scholar
  20. Du G, Hu J, Huang H, Qin Y, Han X, Wu D, Song L, Xia Y, Wang X (2012) Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo. Env Toxicol and Chem/SETAC. doi: 10.1002/etc.2034 Google Scholar
  21. Fair PA, Driscoll E, Mollenhauer MA, Bradshaw SG, Yun SH, Kannan K, Bossart GD, Keil DE, Peden-Adams MM (2011) Effects of environmentally-relevant levels of perfluorooctane sulfonate on clinical parameters and immunological functions in B6C3F1 mice. J Immunotoxicol 8(1):17–29. doi: 10.3109/1547691X.2010.527868 CrossRefGoogle Scholar
  22. Fei C, McLaughlin JK, Lipworth L, Olsen J (2008) Prenatal exposure to perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) and maternally reported developmental milestones in infancy. Environ Heal Perspect 116(10):1391–1395. doi: 10.1289/ehp.11277 CrossRefGoogle Scholar
  23. Fei C, McLaughlin JK, Lipworth L, Olsen J (2009) Maternal levels of perfluorinated chemicals and subfecundity. Hum Reprod 24(5):1200–1205. doi: 10.1093/humrep/den490 CrossRefGoogle Scholar
  24. Fei C, McLaughlin JK, Tarone RE, Olsen J (2007) Perfluorinated chemicals and fetal growth: a study within the Danish national birth cohort. Environ Heal Perspect 115(11):1677–1682. doi: 10.1289/ehp.10506 CrossRefGoogle Scholar
  25. Fei C, Olsen J (2011) Prenatal exposure to perfluorinated chemicals and behavioral or coordination problems at age 7 years. Environ Heal Perspect 119(4):573–578. doi: 10.1289/ehp.1002026 CrossRefGoogle Scholar
  26. Fromme H, Tittlemier SA, Volkel W, Wilhelm M, Twardella D (2009) Perfluorinated compounds—exposure assessment for the general population in Western countries. Int J Hyg Environ Heal 212(3):239–270. doi: 10.1016/j.ijheh.2008.04.007 CrossRefGoogle Scholar
  27. Gao W, Bohl CE, Dalton JT (2005) Chemistry and structural biology of androgen receptor. Chem Rev 105(9):3352–3370. doi: 10.1021/cr020456u CrossRefGoogle Scholar
  28. Ghisari M, Bonefeld-Jorgensen EC (2005) Impact of environmental chemicals on the thyroid hormone function in pituitary rat GH3 cells. Mol Cell Endocrinol 244(1–2):31–41. doi: 10.1016/j.mce.2005.01.013 CrossRefGoogle Scholar
  29. Ghisari M, Bonefeld-Jorgensen EC (2009) Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions. Toxicol Lett 189(1):67–77. doi: 10.1016/j.toxlet.2009.05.004 CrossRefGoogle Scholar
  30. Giesy JP, Kannan K (2002) Perfluorochemical surfactants in the environment. Environ Sci Technol 36(7):146A–152ACrossRefGoogle Scholar
  31. Grandjean P, Andersen EW, Budtz-Jorgensen E, Nielsen F, Molbak K, Weihe P, Heilmann C (2012) Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA 307(4):391–397. doi: 10.1001/jama.2011.2034 CrossRefGoogle Scholar
  32. Grandjean P, Bellinger D, Bergman A, Cordier S, Davey-Smith G, Eskenazi B, Gee D, Gray K, Hanson M, van den Hazel P, Heindel JJ, Heinzow B, Hertz-Picciotto I, Hu H, Huang TT, Jensen TK, Landrigan PJ, McMillen IC, Murata K, Ritz B, Schoeters G, Skakkebaek NE, Skerfving S, Weihe P (2008) The faroes statement: human health effects of developmental exposure to chemicals in our environment. Basic & Clinical Pharmacol & Toxicol 102(2):73–75. doi: 10.1111/j.1742-7843.2007.00114.x Google Scholar
  33. Haug LS, Huber S, Becher G, Thomsen C (2011) Characterisation of human exposure pathways to perfluorinated compounds—comparing exposure estimates with biomarkers of exposure. Environ Int 37(4):687–693. doi: 10.1016/j.envint.2011.01.011 CrossRefGoogle Scholar
  34. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Strom A, Treuter E, Warner M, Gustafsson JA (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87(3):905–931. doi: 10.1152/physrev.00026.2006 CrossRefGoogle Scholar
  35. Henry ND, Fair PA (2011) Comparison of in vitro cytotoxicity, estrogenicity and anti-estrogenicity of triclosan, perfluorooctane sulfonate and perfluorooctanoic acid. JAT. doi: 10.1002/jat.1736 Google Scholar
  36. Hoffman K, Webster TF, Weisskopf MG, Weinberg J, Vieira VM (2010) Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in US children 12–15 years of age. Environ Heal Perspect 118(12):1762–1767. doi: 10.1289/ehp.1001898 CrossRefGoogle Scholar
  37. Ikeda T, Aiba K, Fukuda K, Tanaka M (1985) The induction of peroxisome proliferation in rat liver by perfluorinated fatty acids, metabolically inert derivatives of fatty acids. J Biochem 98(2):475–482Google Scholar
  38. Intrasuksri U, Rangwala SM, O’Brien M, Noonan DJ, Feller DR (1998) Mechanisms of peroxisome proliferation by perfluorooctanoic acid and endogenous fatty acids. Gen Pharmacol 31(2):187–197CrossRefGoogle Scholar
  39. Ishibashi H, Ishida H, Matsuoka M, Tominaga N, Arizono K (2007) Estrogenic effects of fluorotelomer alcohols for human estrogen receptor isoforms alpha and beta in vitro. Biol Pharm Bull 30(7):1358–1359CrossRefGoogle Scholar
  40. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347(6294):645–650. doi: 10.1038/347645a0 CrossRefGoogle Scholar
  41. Joensen UN, Bossi R, Leffers H, Jensen AA, Skakkebaek NE, Jorgensen N (2009) Do perfluoroalkyl compounds impair human semen quality? Environ Heal Perspect 117(6):923–927. doi: 10.1289/ehp.0800517 Google Scholar
  42. Johansson N, Eriksson P, Viberg H (2009) Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain. Toxicol Sci 108(2):412–418. doi: 10.1093/toxsci/kfp029 CrossRefGoogle Scholar
  43. Jones ME, Boon WC, Proietto J, Simpson ER (2006) Of mice and men: the evolving phenotype of aromatase deficiency. TEM 17(2):55–64. doi: 10.1016/j.tem.2006.01.004 Google Scholar
  44. Just WW, Gorgas K, Hartl FU, Heinemann P, Salzer M, Schimassek H (1989) Biochemical effects and zonal heterogeneity of peroxisome proliferation induced by perfluorocarboxylic acids in rat liver. Hepatology 9(4):570–581CrossRefGoogle Scholar
  45. Keil DE, Mehlmann T, Butterworth L, Peden-Adams MM (2008) Gestational exposure to perfluorooctane sulfonate suppresses immune function in B6C3F1 mice. Toxicol Sci 103(1):77–85. doi: 10.1093/toxsci/kfn015 CrossRefGoogle Scholar
  46. Kennedy GL Jr, Butenhoff JL, Olsen GW, O’Connor JC, Seacat AM, Perkins RG, Biegel LB, Murphy SR, Farrar DG (2004) The toxicology of perfluorooctanoate. Crit Rev Toxicol 34(4):351–384CrossRefGoogle Scholar
  47. Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM, DeLuca JG, Lai DY, McKee RH, Peters JM, Roberts RA, Fenner-Crisp PA (2003) PPARalpha agonist-induced rodent tumors: modes of action and human relevance. Crit Rev Toxicol 33(6):655–780. doi: 10.1080/713608372 CrossRefGoogle Scholar
  48. Kortenkamp A, Altenburger R (1998) Synergisms with mixtures of xenoestrogens: a reevaluation using the method of isoboles. Sci Total Environ 221(1):59–73CrossRefGoogle Scholar
  49. Kraugerud M, Zimmer KE, Ropstad E, Verhaegen S (2011) Perfluorinated compounds differentially affect steroidogenesis and viability in the human adrenocortical carcinoma (H295R) in vitro cell assay. Toxicol Lett 205:62–68CrossRefGoogle Scholar
  50. Kruger T, Long M, Bonefeld-Jorgensen EC (2008) Plastic components affect the activation of the aryl hydrocarbon and the androgen receptor. Toxicology 246(2–3):112–123. doi: 10.1016/j.tox.2007.12.028 CrossRefGoogle Scholar
  51. Kudo N, Iwase Y, Okayachi H, Yamakawa Y, Kawashima Y (2005) Induction of hepatic peroxisome proliferation by 8–2 telomer alcohol feeding in mice: formation of perfluorooctanoic acid in the liver. Toxicol Sci 86(2):231–238. doi: 10.1093/toxsci/kfi191 CrossRefGoogle Scholar
  52. Kudo N, Kawashima Y (2003) Toxicity and toxicokinetics of perfluorooctanoic acid in humans and animals. J Toxicol Sci 28(2):49–57CrossRefGoogle Scholar
  53. Lau C (2012) Perfluorinated compounds. EXS 101:47–86. doi: 10.1007/978-3-7643-8340-4_3 Google Scholar
  54. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99(2):366–394. doi: 10.1093/toxsci/kfm128 CrossRefGoogle Scholar
  55. Lau C, Butenhoff JL, Rogers JM (2004) The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharmacol 198(2):231–241. doi: 10.1016/j.taap.2003.11.031 CrossRefGoogle Scholar
  56. Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, Butenhoff JL, Stevenson LA (2003) Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol Sci 74(2):382–392. doi: 10.1093/toxsci/kfg122 CrossRefGoogle Scholar
  57. Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, Fernandez-Salguero PM, Westphal H, Gonzalez FJ (1995) Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15(6):3012–3022Google Scholar
  58. Liu C, Du Y, Zhou B (2007) Evaluation of estrogenic activities and mechanism of action of perfluorinated chemicals determined by vitellogenin induction in primary cultured tilapia hepatocytes. Aquat Toxicol 85(4):267–277. doi: 10.1016/j.aquatox.2007.09.009 CrossRefGoogle Scholar
  59. Liu RC, Hurtt ME, Cook JC, Biegel LB (1996) Effect of the peroxisome proliferator, ammonium perfluorooctanoate (C8), on hepatic aromatase activity in adult male Crl: CD BR (CD) rats. Fundam and Appl Toxicol 30(2):220–228CrossRefGoogle Scholar
  60. Long M, Ghisari M, Bonefeld‐Jørgensen EC (2013) Effects of perfluoroalkyl acids on the function of the thyroid hormone and the aryl hydrocarbon receptor. Environ Sci Res Int. doi: 10.1007/s11356-013-1628-7
  61. Lopez-Espinosa MJ, Fletcher T, Armstrong B, Genser B, Dhatariya K, Mondal D, Ducatman A, Leonardi G (2011) Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with age of puberty among children living near a chemical plant. Environ Sci Technol 45(19):8160–8166. doi: 10.1021/es1038694 CrossRefGoogle Scholar
  62. Luccio-Camelo DC, Prins GS (2011) Disruption of androgen receptor signaling in males by environmental chemicals. The J of Steroid Biochem and Mol Biol 127(1–2):74–82. doi: 10.1016/j.jsbmb.2011.04.004 CrossRefGoogle Scholar
  63. Luebker DJ, York RG, Hansen KJ, Moore JA, Butenhoff JL (2005) Neonatal mortality from in utero exposure to perfluorooctane sulfonate (PFOS) in Sprague–Dawley rats: dose–response, and biochemical and pharmacokinetic parameters. Toxicology 215(1–2):149–169. doi: 10.1016/j.tox.2005.07.019 CrossRefGoogle Scholar
  64. Maestri L, Negri S, Ferrari M, Ghittori S, Fabris F, Danesino P, Imbriani M (2006) Determination of perfluorooctanoic acid and perfluorooctane sulfonate in human tissues by liquid chromatography/single quadrupole mass spectrometry. RCM 20(18):2728–2734. doi: 10.1002/rcm.2661 Google Scholar
  65. Maras M, Vanparys C, Muylle F, Robbens J, Berger U, Barber JL, Blust R, De Coen W (2006) Estrogen-like properties of fluorotelomer alcohols as revealed by mcf-7 breast cancer cell proliferation. Environ Heal Perspect 114(1):100–105CrossRefGoogle Scholar
  66. Mueller SO (2004) Xenoestrogens: mechanisms of action and detection methods. Anal Bioanal Chem 378(3):582–587. doi: 10.1007/s00216-003-2238-x CrossRefGoogle Scholar
  67. Needham LL, Grandjean P, Heinzow B, Jorgensen PJ, Nielsen F, Patterson DG Jr, Sjodin A, Turner WE, Weihe P (2011) Partition of environmental chemicals between maternal and fetal blood and tissues. Environ Sci Technol 45(3):1121–1126. doi: 10.1021/es1019614 CrossRefGoogle Scholar
  68. Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, Zobel LR (2007) Half-life of serum elimination of perfluorooctane sulfonate, perfluorohexane sulfonate, and perfluorooctanoate in retired fluoro chemical production workers. Environ Heal Perspect 115(9):1298–1305. doi: 10.1289/ehp.10009 CrossRefGoogle Scholar
  69. Parsons JR, Saez M, Dolfing J, de Voogt P (2008) Biodegradation of perfluorinated compounds. Rev Environ Contam Toxicol 196:53–71CrossRefGoogle Scholar
  70. Payne J, Rajapakse N, Wilkins M, Kortenkamp A (2000) Prediction and assessment of the effects of mixtures of four xenoestrogens. Environ Heal Perspect 108(10):983–987CrossRefGoogle Scholar
  71. Peden-Adams MM, Keller JM, Eudaly JG, Berger J, Gilkeson GS, Keil DE (2008) Suppression of humoral immunity in mice following exposure to perfluorooctane sulfonate. Toxicol Sci 104(1):144–154. doi: 10.1093/toxsci/kfn059 CrossRefGoogle Scholar
  72. Pons M, Gagne D, Nicolas JC, Mehtali M (1990) A new cellular model of response to estrogens: a bioluminescent test to characterize (anti) estrogen molecules. Biotechniques 9(4):450–459Google Scholar
  73. Rajapakse N, Silva E, Kortenkamp A (2002) Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action. Environ Heal Perspect 110(9):917–921CrossRefGoogle Scholar
  74. Rosenmai AK, Nielsen FK, Pedersen M, Hadrup N, Trier X, Christensen JH, Vinggaard AM (2012) Fluorochemicals used in food packaging inhibit male sex hormone synthesis. Toxicol Appl Pharmacol. doi: 10.1016/j.taap.2012.10.022 Google Scholar
  75. Sikka SC, Wang R (2008) Endocrine disruptors and estrogenic effects on male reproductive axis. Asian J of Andrology 10(1):134–145. doi: 10.1111/j.1745-7262.2008.00370.x CrossRefGoogle Scholar
  76. Sohlenius AK, Andersson K, DePierre JW (1992) The effects of perfluoro-octanoic acid on hepatic peroxisome proliferation and related parameters show no sex-related differences in mice. Biochem J 285(Pt 3):779–783Google Scholar
  77. Stockholm convention listing of POPs in the Stockholm Convention Accessed 17 Jan 2013
  78. Suja F, Pramanik BK, Zain SM (2009) Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: a review paper. Water Sci and Techn 60(6):1533–1544. doi: 10.2166/wst.2009.504 CrossRefGoogle Scholar
  79. Tao L, Ma J, Kunisue T, Libelo EL, Tanabe S, Kannan K (2008) Perfluorinated compounds in human breast milk from several Asian countries, and in infant formula and dairy milk from the United States. Environ Sci Technol 42(22):8597–8602CrossRefGoogle Scholar
  80. Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Barbee BD, Richards JH, Butenhoff JL, Stevenson LA, Lau C (2003) Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations. Toxicol Sci 74(2):369–381. doi: 10.1093/toxsci/kfg121 CrossRefGoogle Scholar
  81. Tilton SC, Orner GA, Benninghoff AD, Carpenter HM, Hendricks JD, Pereira CB, Williams DE (2008) Genomic profiling reveals an alternate mechanism for hepatic tumor promotion by perfluorooctanoic acid in rainbow trout. Environ Heal Perspect 116(8):1047–1055. doi: 10.1289/ehp.11190 CrossRefGoogle Scholar
  82. Toft G, Jonsson BA, Lindh CH, Giwercman A, Spano M, Heederik D, Lenters V, Vermeulen R, Rylander L, Pedersen HS, Ludwicki JK, Zviezdai V, Bonde JP (2012) Exposure to perfluorinated compounds and human semen quality in Arctic and European populations. Hum Reprod 27(8):2532–2540. doi: 10.1093/humrep/des185 CrossRefGoogle Scholar
  83. Trudel D, Horowitz L, Wormuth M, Scheringer M, Cousins IT, Hungerbuhler K (2008) Estimating consumer exposure to PFOS and PFOA. Risk Anal 28(2):251–269. doi: 10.1111/j.1539-6924.2008.01017.x CrossRefGoogle Scholar
  84. Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ (2006) Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci 92(2):476–489. doi: 10.1093/toxsci/kfl014 CrossRefGoogle Scholar
  85. Washino N, Saijo Y, Sasaki S, Kato S, Ban S, Konishi K, Ito R, Nakata A, Iwasaki Y, Saito K, Nakazawa H, Kishi R (2009) Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal growth. Environ Heal Perspect 117(4):660–667. doi: 10.1289/ehp.11681 Google Scholar
  86. Wei Y, Dai J, Liu M, Wang J, Xu M, Zha J, Wang Z (2007) Estrogen-like properties of perfluorooctanoic acid as revealed by expressing hepatic estrogen-responsive genes in rare minnows (Gobiocypris rarus). Env Toxicol and Chem/SETAC 26(11):2440–2447. doi: 10.1897/07-008R1.1 CrossRefGoogle Scholar
  87. Yu WG, Liu W, Jin YH (2009a) Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism. Env Toxicoland Chem/SETAC 28(5):990–996. doi: 10.1897/08-345.1 CrossRefGoogle Scholar
  88. Yu WG, Liu W, Jin YH, Liu XH, Wang FQ, Liu L, Nakayama SF (2009b) Prenatal and postnatal impact of perfluorooctane sulfonate (PFOS) on rat development: a cross-foster study on chemical burden and thyroid hormone system. Environ Sci Technol 43(21):8416–8422. doi: 10.1021/es901602d CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lisbeth Stigaard Kjeldsen
    • 1
  • Eva Cecilie Bonefeld-Jørgensen
    • 1
    Email author
  1. 1.Centre for Arctic Health and Unit of Cellular and Molecular Toxicology, Department of Public HealthAarhus UniversityAarhusDenmark

Personalised recommendations