Environmental Science and Pollution Research

, Volume 20, Issue 10, pp 6934–6971 | Cite as

Solution by dilution?—A review on the pollution status of the Yangtze River

  • Tilman Floehr
  • Hongxia Xiao
  • Björn Scholz-Starke
  • Lingling Wu
  • Junli Hou
  • Daqiang Yin
  • Xiaowei Zhang
  • Rong Ji
  • Xingzhong Yuan
  • Richard Ottermanns
  • Martina Roß-Nickoll
  • Andreas Schäffer
  • Henner Hollert
Processes and Environmental Quality in the Yangtze River System


The Yangtze River has been a source of life and prosperity for the Chinese people for centuries and is a habitat for a remarkable variety of aquatic species. But the river suffers from huge amounts of urban sewage, agricultural effluents, and industrial wastewater as well as ship navigation wastes along its course. With respect to the vast amounts of water and sediments discharged by the Yangtze River, it is reasonable to ask whether the pollution problem may be solved by simple dilution. This article reviews the past two decades of published research on organic pollutants in the Yangtze River and several adjacent water bodies connected to the main stream, according to a holistic approach. Organic pollutant levels and potential effects of water and sediments on wildlife and humans, measured in vitro, in vivo, and in situ, were critically reviewed. The contamination with organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans, polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), and others, of water and sediment along the river was described. Especially Wuhan section and the Yangtze Estuary exhibited stronger pollution than other sections. Bioassays, displaying predominantly the endpoints mutagenicity and endocrine disruption, applied at sediments, drinking water, and surface water indicated a potential health risk in several areas. Aquatic organisms exhibited detectable concentrations of toxic compounds like PCBs, OCPs, PBDEs, and PFCs. Genotoxic effects could also be assessed in situ in fish. To summarize, it can be stated that dilution reduces the ecotoxicological risk in the Yangtze River, but does not eliminate it. Keeping in mind an approximately 14 times greater water discharge compared to the major European river Rhine, the absolute pollution mass transfer of the Yangtze River is of severe concern for the environmental quality of its estuary and the East China Sea. Based on the review, further research needs have been identified.


Yangtze River Ecotoxicity Triad approach Organic pollutants Bioassay Mutagenicity Fish 



Our review has been carried out as part of the MICROTOX project (“Transformation, Bioaccumulation and Toxicity of Organic Micropollutants in the Yangtze Three Gorges Reservoir”), which is integrated into the joint environmental research program “Yangtze—Hydro-Sustainable Management of the Newly Created Ecosystem at the Three Gorges Dam” (Bergmann et al. 2012; http://www.yangtze-project.de). The project has been financed by the Federal Ministry of Education and Research, Germany (BMBF) as part of the research cluster “Pollutants/Water/Sediment—Impacts of Transformation and Transportation Processes on the Yangtze Water Quality.” The review was also supported by a personal grant to Hongxia Xiao by the scholarship program of the Chinese Scholarship Council. The authors want to express their gratitude for the great and helpful effort that was put into the manuscript by the two anonymous reviewers.

Supplementary material

11356_2013_1666_MOESM1_ESM.docx (195 kb)
ESM 1 (DOCX 195 kb)


  1. Ahlf W, Hollert H, Neumann-Hensel H, Ricking M (2002) A guidance for the assessment and evaluation of sediment quality: a German approach based on ecotoxicological and chemical measurements. Journal of Soils and Sediments 2:37–42. doi: 10.1007/bf02991249 CrossRefGoogle Scholar
  2. Ahrens L (2010) Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate. J Environ Monit 13:20–31. doi: 10.1039/c0em00373e CrossRefGoogle Scholar
  3. An Q, Dong Y, Ge C, Wang H (2006) Residues and distribution character of organochlorine pesticides in stream sediments in southwestern suburb of Nanjing, Huanjing Kexue. Environmental Science 27:737–741 (in Chinese)Google Scholar
  4. An Q, Wu Y, Wang J, Li Z (2009) Heavy metals and polychlorinated biphenyls in sediments of the Yangtze river estuary, China. Environmental Earth Sciences 59:363–370. doi: 10.1007/s12665-009-0034-4 CrossRefGoogle Scholar
  5. ATSDR (Agency for Toxic Substances and Disease Registry) (2000) Toxicological profile for polychlorinated biphenyls (PCBs). ATSDR, Atlanta. Available at http://www.atsdr.cdc.gov/toxprofiles/tp17.pdf
  6. ATSDR (Agency for Toxic Substances and Disease Registry) (2009) Case studies in environmental medicine toxicity of polycyclic aromatic hydrocarbons (PAHs). ATSDR, Atlanta. Available at http://www.atsdr.cdc.gov/csem/pah/docs/pah.pdf
  7. Bao J, Liu W, Liu L, Jin Y, Ran X, Zhang Z (2010) Perfluorinated compounds in urban river sediments from Guangzhou and Shanghai of China. Chemosphere 80:123–130. doi: 10.1016/j.chemosphere.2010.04.008 CrossRefGoogle Scholar
  8. Bao LJ, Maruya KA, Snyder SA, Zeng EY (2012) China’s water pollution by persistent organic pollutants. Environ Pollut 163:100–108. doi: 10.1016/j.envpol.2011.12.022 CrossRefGoogle Scholar
  9. Bergmann A, Bi Y, Chen L, Floehr T, Henkelmann B, Holbach A, Hollert H, Hu W, Kranzioch I, Klumpp E, Küppers S, Norra S, Ottermanns R, Pfister G, Roß-Nickoll M, Schäffer A, Schleicher N, Schmidt B, Scholz-Starke B, Schramm KW, Subklew G, Tiehm A, Temoka C, Wang J, Westrich B, Wilken RD, Wolf A, Xiang X, Yuan Y (2012) The Yangtze-Hydro Project: a Chinese–German environmental program. Environ Sci Pollut Res 19:1341–1344. doi: 10.1007/s11356-011-0645-7 CrossRefGoogle Scholar
  10. Bian H, Li Z, Liu P, Pan J (2010) Spatial distribution and deposition history of nonylphenol and bisphenol A in sediments from the Changjiang River (Yangtze River) Estuary and its adjacent East China Sea. Acta Oceanologica Sinica 29:44–51. doi: 10.1007/s13131-010-0062-7 CrossRefGoogle Scholar
  11. Bodo BA (1996) Aquatic ecosystem contamination and riverine flux of persistent organochlorine pollutants (POPs) to coastal seas in the Asia-Pacific region. A study commissioned by the UNEP GEMS/Water Programme in support of the Global Programme of Action for the Protection of the Marine Environment from Land-Based Activities. Global Environmental Monitoring System, Burlington. Available at http://www.unep.org/gemswater/Portals/24154/pdfs/new/1996%20GEMS%20UNEP-POPs-AsianPacificRegion.pdf
  12. Boettcher M, Grund S, Keiter S, Kosmehl T, Reifferscheid G, Seitz N, Rocha PS, Hollert H, Braunbeck T (2010) Comparison of in vitro and in situ genotoxicity in the Danube River by means of the comet assay and the micronucleus test. Mutat Res Genet Toxicol Environ Mutagen 700:11–17. doi: 10.1016/j.mrgentox.2010.04.016 CrossRefGoogle Scholar
  13. Boorman GA, Dellarco V, Dunnick JK, Chapin RE, Hunter S, Hauchman F, Gardner H, Cox M, Sills RC (1999) Drinking water disinfection byproducts: review and approach to toxicity evaluation. Environ Heal Perspect 107:207–217. doi: 10.2307/3434484 Google Scholar
  14. Brack W, Schirmer K, Erdinger L, Hollert H (2005) Effect-directed analysis of mutagens and ethoxyresorufin-O-deethylase inducers in aquatic sediments. Environ Toxicol Chem 24:2445–2458. doi: 10.1897/05-078R.1 CrossRefGoogle Scholar
  15. Brack W, Klamer HJC, de Ada ML, Barcelo D (2007) Effect-directed analysis of key toxicants in European river basins—a review. Environ Sci Pollut Res 14:30–38. doi: 10.1065/espr2006.08.329 CrossRefGoogle Scholar
  16. Brinkmann M, Hudjetz S, Cofalla C, Roger S, Kammann U, Giesy JP, Hecker M, Wiseman S, Zhang X, Woelz J, Schuettrumpf H, Hollert H (2010) A combined hydraulic and toxicological approach to assess re-suspended sediments during simulated flood events. Part I—multiple biomarkers in rainbow trout. Journal of Soils and Sediments 10:1347–1361. doi: 10.1007/s11368-010-0271-x CrossRefGoogle Scholar
  17. Cai M, Zhao Z, Yang H, Yin Z, Hong Q, Sturm R, Ebinghaus R, Ahrens L, Cai M, He J, Xie Z (2012a) Spatial distribution of per- and polyfluoroalkyl compounds in coastal waters from the East to South China Sea. Environ Pollut 161:162–169. doi: 10.1016/j.envpol.2011.09.045 CrossRefGoogle Scholar
  18. Cai W, Luo G, Xu X, Du X (2012b) Contamination characteristics of polycyclic aromatic hydrocarbons (PAHs) in surface water from Jialing River in Chongqing, Huanjing Kexue. Environmental Science 33:2341–2346 (in Chinese)Google Scholar
  19. CCME (Canadian Council of Ministers of the Environment) (2002) Canadian sediment quality guidelines for the protection of aquatic life: summary tables. Updated 2002. Available at http://www.ecy.wa.gov/programs/eap/psamp/BoundaryBay/PSAMP-BBAMP%20documents/Canadian%20guidelines%20for%20water%20quality/SedimentProtAquaticLifeSummaryTables%28en%29.pdf
  20. Chapman P, Power E, Burton G (1992) Integrative assessments in aquatic ecosystems. Sediment toxicity assessment. Lewis, Boca Raton, pp 313–340Google Scholar
  21. Chapman PM (1990) The sediment quality triad approach to determining pollution-induced degradation. Sci Total Environ 97:815–825. doi: 10.1016/0048-9697(90)90277-2 CrossRefGoogle Scholar
  22. Chapman PM, Hollert H (2006) Should the Sediment Quality Triad become a tetrad, a pentad, or possibly even a hexad? Journal of Soils and Sediments 6:4–8. doi: 10.1065/jss2006.01.152 CrossRefGoogle Scholar
  23. Chen DQ, Duan XB, Liu SP, Shi WG, Wang B (2002a) On the dynamics of fishery resources of the Yangtze River and its management. Acta Hydrobiologica Sinica 26:685–690 (in Chinese)Google Scholar
  24. Chen DQ, Duan XB, Liu SP, Shi WG (2004) Status and management of fishery resources of the Yangtze River, Kingdom of Cambodia. pp 173–182. Available at http://www.apfic.org/apfic_downloads/pubs_RAP/2004-16.pdf#page=187
  25. Chen DQ, Xiong F, Wang K, Chang YH (2009) Status of research on Yangtze fish biology and fisheries. Environ Biol Fishes 85:337–357. doi: 10.1007/s10641-009-9517-0 CrossRefGoogle Scholar
  26. Chen G, White PA (2004) The mutagenic hazards of aquatic sediments: a review. Mutat Res Rev Mutat Res 567:151–225. doi: 10.1016/j.mrrev.2004.08.005 CrossRefGoogle Scholar
  27. Chen J, Sun Z, Qu J, Wu W, Hu G (2002b) Water pollution and its toxicity to fishes in the major areas of the lower reaches of the Yangtze River. Acta Hydrobiologica Sinica 26:635–640 (in Chinese)Google Scholar
  28. Chen J, Luo J, Qiu Z, Xu C, Huang Y, Jin Y, Saito N, Yoshida T, Ozawa K, Cao J (2008) PCDDs/PCDFs and PCBs in water samples from the Three Gorge Reservoir. Chemosphere 70:1545–1551. doi: 10.1016/j.chemosphere.2007.08.063 CrossRefGoogle Scholar
  29. Chen SJ, Gao XJ, Mai BX, Chen ZM, Luo XJ, Sheng GY, Fu JM, Zeng EY (2006) Polybrominated diphenyl ethers in surface sediments of the Yangtze River Delta: levels, distribution and potential hydrodynamic influence. Environ Pollut 144:951–957. doi: 10.1016/j.envpol.2006.01.044 CrossRefGoogle Scholar
  30. Chen X, Zhang D, Lu YH, Zheng WW, Wu YX, Wei X, Tian DJ, Wang X, Zhang H, Guo S, Jiang SH, Qu WD (2010) Formation and changes of regulated trihalomethanes and haloacetic acids in raw water of Yangtze River, Huangpu River and different treatment processes and pipelines network. Chinese Journal of Preventive Medicine 44:893–898 (in Chinese)Google Scholar
  31. Chen Y, Li J, Liu L, Zhao N (2012) Polybrominated diphenyl ethers fate in China: a review with an emphasis on environmental contamination levels, human exposure and regulation. J Environ Manage 113:22–30. doi: 10.1016/j.jenvman.2012.08.003 CrossRefGoogle Scholar
  32. Chen Z, Li J, Shen H, Wang Z (2001) Yangtze River of China: historical analysis of discharge variability and sediment flux. Geomorphology 41:77–91. doi: 10.1016/S0169-555X(01)00106-4 CrossRefGoogle Scholar
  33. Cheng S, Liu M, Liu H, Xu S (2006) Distribution of polychlorinated biphenyls (PCBs) in suspended particulate matters from the Yangtze estuary and coastal areas. Huanjing Kexue Environmental Science 27:110–114 (in Chinese)Google Scholar
  34. China Statistical Yearbook (2004) National Bureau of Statistics of the People’s Republic of China. Available at http://www.stats.gov.cn/english/
  35. Cohn BA, Wolff MS, Cirillo PM, Sholtz RI (2007) DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Heal Perspect 115:1406–1414. doi: 10.1289/ehp.10260 Google Scholar
  36. Colmsjö A, Rannug A, Rannug U (1984) Some chloro derivatives of polynuclear aromatic hydrocarbons are potent mutagens in Salmonella typhimurium. Mutation Research/Genetic Toxicology 135:21–29. doi: 10.1016/0165-1218(84)90144-7 CrossRefGoogle Scholar
  37. Cui Z, Liu J, Li P, Cao B, Luo C, Cao J (2009) Biomonitoring of detoxifying activity as measured by CYP1A1 induction in Yangtze and Jialing Rivers in Chongqing City in China. Journal of Toxicology and Environmental Health-Part a-Current Issues 72:782–788. doi: 10.1080/15287390902841680 CrossRefGoogle Scholar
  38. Cunny HC, Mayes BA, Rosica KA, Trutter JA, VanMiller JP (1997) Subchronic toxicity (90-day) study with para-nonylphenol in rats. Regul Toxicol Pharmacol 26:172–178. doi: 10.1006/rtph.1997.1154 CrossRefGoogle Scholar
  39. da Silva AK, Wells MJM, Morse AN, Pellegrin M-L, Miller SM, Peccia J, Sima LC (2012) Emerging pollutants—part I: occurrence, fate and transport. Water Environment Research 84:1878–1908. doi: 10.2175/106143012x13407275695878 CrossRefGoogle Scholar
  40. de Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46:583–624. doi: 10.1016/S0045-6535(01)00225-9 CrossRefGoogle Scholar
  41. Deborde M, von Gunten U (2008) Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: a critical review. Water Res 42:13–51. doi: 10.1016/j.watres.2007.07.025 CrossRefGoogle Scholar
  42. Demers PA, Davies HW, Friesen MC, Hertzman C, Ostry A, Hershler R, Teschke K (2006) Cancer and occupational exposure to pentachlorophenol and tetrachlorophenol (Canada). Cancer Causes and Control 17:749–758. doi: 10.1007/s10552-006-0007-9 CrossRefGoogle Scholar
  43. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30:293–342. doi: 10.1210/er.2009-0002 CrossRefGoogle Scholar
  44. di Domenico A (1990) Guidelines for the definition of environmental action alert thresholds for polychlorodibenzodioxins and polychlorodibenzofurans. Regul Toxicol Pharmacol 11:8–23. doi: 10.1016/0273-2300(90)90004-U CrossRefGoogle Scholar
  45. Dobias L, Kusova J, Gajdos O, Vidova P, Gajdosova D, Havrankova J, Fried M, Binkova B, Topinka J (1999) Bioassay-directed chemical analysis and detection of mutagenicity in ambient air of the coke oven. Mutat Res Genet Toxicol Environ Mutagen 445:285–293. doi: 10.1016/S1383-5718(99)00133-3 CrossRefGoogle Scholar
  46. Dong X, Yang X, Lu Y, Ma K, Bao J, Zhang H, Tang F (2010) Comparison of the biotoxicity of organic compounds in source and tap water from the Yangtze and Han River. China Environmental Science 30:263–268 (in Chinese)Google Scholar
  47. Eastmond DA, Hartwig A, Anderson D, Anwar WA, Cimino MC, Dobrev I, Douglas GR, Nohmi T, Phillips DH, Vickers C (2009) Mutagenicity testing for chemical risk assessment: update of the WHO/IPCS Harmonized Scheme. Mutagenesis 24:341–349. doi: 10.1093/mutage/gep014 CrossRefGoogle Scholar
  48. EC Directives (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000. The EU Water Framework Directive—integrated river basin management for Europe. Available at http://ec.europa.eu/environment/water/water-framework/index_en.html
  49. EC Directives (2008) Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008. Official Journal of the European Union, pp 84–97. Available at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:348:0084:0097:EN:PDF
  50. Environment Canada Webpage. Environmental monitoring and surveillance in support of the chemicals management plan—polybrominated diphenyl ethers in the Canadian environment. Available at http://www.ec.gc.ca/scitech/default.asp?lang=En&xml=E2E4D8FD-32C7-42A1-B1D8-500D18E86718
  51. EU (European Union) (2006) Commission Regulation (EC) No 199/2006 of 3 February 2006 amending Regulation (EC) No 466/2001 setting maximum levels for certain contaminants in foodstuffs as regards dioxins and dioxin-like PCBs. Off J Eur Union 32:34–38, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:032:0034:0038:EN:PDF Google Scholar
  52. Feng C, Xia X, Shen Z, Zhou Z (2007) Distribution and sources of polycyclic aromatic hydrocarbons in Wuhan section of the Yangtze River, China. Environ Monit Assess 133:447–458. doi: 10.1007/s10661-006-9599-5 CrossRefGoogle Scholar
  53. Feng J, Chan CK, Fang M, Hu M, He L, Tang X (2006) Characteristics of organic matter in PM2.5 in Shanghai. Chemosphere 64:1393–1400. doi: 10.1016/j.chemosphere.2005.12.026 CrossRefGoogle Scholar
  54. Fu B, Wu B, Lue Y, Xu Z, Cao J, Niu D, Yang G, Zhou Y (2010) Three Gorges Project: efforts and challenges for the environment. Prog Phys Geogr 34:741–754. doi: 10.1177/0309133310370286 CrossRefGoogle Scholar
  55. Fu C, Wu J, Chen J, Wu Q, Lei G (2003) Freshwater fish biodiversity in the Yangtze River basin of China: patterns, threats and conservation. Biodivers Conserv 12:1649–1685. doi: 10.1023/A:1023697714517 CrossRefGoogle Scholar
  56. Fu PP, Von Tungeln LS, Chiu LH, Own ZY (1999) Halogenated polycyclic aromatic hydrocarbons: a class of genotoxic environmental pollutants. Journal of Environmental Science & Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews 17:71–109. doi: 10.1080/10590509909373510 CrossRefGoogle Scholar
  57. Gao Z, Xu J, Xian Q, Feng J, Chen X, Yu H (2009) Polybrominated diphenyl ethers (PBDEs) in aquatic biota from the lower reach of the Yangtze River, East China. Chemosphere 75:1273–1279. doi: 10.1016/j.chemosphere.2009.01.065 CrossRefGoogle Scholar
  58. Gerbersdorf SU, Hollert H, Brinkmann M, Wieprecht S, Schuettrumpf H, Manz W (2011) Anthropogenic pollutants affect ecosystem services of freshwater sediments: the need for a “triad plus x” approach. Journal of Soils and Sediments 11:1099–1114. doi: 10.1007/s11368-011-0373-0 CrossRefGoogle Scholar
  59. GESB webpage—nonylphenol (German Environmental Speciment Bank). Analytes > alkylphenol compounds > 4-nonylphenol. Available at http://www.umweltprobenbank.de/en/documents/profiles/analytes/15208 (available in English)
  60. Giesy JP, Naile JE, Khim JS, Jones PD, Newsted JL (2010) Aquatic toxicology of perfluorinated chemicals. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol. 202, pp 1–52. doi: 10.1007/978-1-4419-1157-5_1
  61. Greenpeace (2010) Swimming in poison: a hazardous chemical cocktail found in Yangtze River fish. Available at http://www.greenpeace.org/eastasia/Global/eastasia/publications/reports/toxics/2010/swimming-in-poison-yangtze-fish.pdf
  62. Grund S, Keiter S, Boettcher M, Seitz N, Wurm K, Manz W, Hollert H, Braunbeck T (2010) Assessment of fish health status in the Upper Danube River by investigation of ultrastructural alterations in the liver of barbel Barbus barbus. Dis Aquat Org 88:235–248. doi: 10.3354/dao02159 CrossRefGoogle Scholar
  63. Guan Y, Wang J, Ni H, Zeng EY (2009) Organochlorine pesticides and polychlorinated biphenyls in riverine runoff of the Pearl River Delta, China: assessment of mass loading, input source and environmental fate. Environ Pollut 157:618–624. doi: 10.1016/j.envpol.2008.08.011 CrossRefGoogle Scholar
  64. Guo Y, Yu HY, Zeng EY (2009) Occurrence, source diagnosis, and biological effect assessment of DDT and its metabolites in various environmental compartments of the Pearl River Delta, South China: a review. Environ Pollut 157:1753–1763. doi: 10.1016/j.envpol.2008.12.026 CrossRefGoogle Scholar
  65. Han F, Chen LS, Ji W, Li X, Zhou C, Hu Y (2009) A comparison of VOCs, SVOCs contents of Yangtze River water and main surface water in Jiangsu, Zhejiang and Shandong. Journal of Preventive Medicine Information 3:161–167 (in Chinese)Google Scholar
  66. He H, Hu G, Sun C, Chen S, Yang M, Li J, Zhao Y, Wang H (2011) Trace analysis of persistent toxic substances in the main stream of Jiangsu section of the Yangtze River, China. Environ Sci Pollut Res 18:638–648. doi: 10.1007/s11356-010-0414-z CrossRefGoogle Scholar
  67. He M, Sun Y, Li X, Yang Z (2006) Distribution patterns of nitrobenzenes and polychlorinated biphenyls in water, suspended particulate matter and sediment from mid- and down-stream of the Yellow River (China). Chemosphere 65:365–374. doi: 10.1016/j.chemosphere.2006.02.033 CrossRefGoogle Scholar
  68. Hecker M, Hollert H (2009) Effect-directed analysis (EDA) in aquatic ecotoxicology: state of the art and future challenges. Environ Sci Pollut Res 16:607–613. doi: 10.1007/s11356-009-0229-y CrossRefGoogle Scholar
  69. Hecker M, Hollert H (2011) Endocrine disruptor screening: regulatory perspectives and needs. Environmental Sciences Europe 23, Article No. 15. doi: 10.1186/2190-4715-23-15
  70. Heudorf U, Mersch-Sundermann V, Angerer J (2007) Phthalates: toxicology and exposure. Int J Hyg Environ Health 210:623–634. doi: 10.1016/j.ijheh.2007.07.011 CrossRefGoogle Scholar
  71. Higley E, Grund S, Jones PD, Schulze T, Seiler T-B, Luebcke-von Varel U, Brack W, Woelz J, Zielke H, Giesy JP, Hollert H, Hecker M (2012) Endocrine disrupting, mutagenic, and teratogenic effects of upper Danube River sediments using effect-directed analysis. Environ Toxicol Chem 31:1053–1062. doi: 10.1002/etc.1777 CrossRefGoogle Scholar
  72. Hildesheim ME, Cantor KP, Lynch CF, Dosemeci M, Lubin J, Alavanja M, Craun G (1998) Drinking water source and chlorination byproducts II. Risk of colon and rectal cancers. Epidemiology 9:29–35. doi: 10.1097/00001648-199801000-00008 Google Scholar
  73. Hilscherova K, Machala M, Kannan K, Blankenship AL, Giesy JP (2000) Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Environ Sci Pollut Res 7:159–171. doi: 10.1016/S0025-326X(02)00097-8 CrossRefGoogle Scholar
  74. Hu GJ, Sun C, Li J, Zhao YG, Wang H, Li YQ (2009) POPs accumulated in fish and benthos bodies taken from Yangtze River in Jiangsu area. Ecotoxicology 18:647–651. doi: 10.1007/s10646-009-0341-2 CrossRefGoogle Scholar
  75. Huang J, Zhang Z, Yu G (2003) Occurrence of dissolved PAHs in the Jinsha River (Panzhihua)—upper reaches of the Yangtze River, Southwest China. J Environ Monit 5:604–609. doi: 10.1039/b210670a CrossRefGoogle Scholar
  76. Huckele S, Track T (2013) Risk management of emerging compounds and pathogens in the water cycle (RiSKWa). Environ Sci Eur 25:1. doi: 10.1186/2190-4715-25-1 CrossRefGoogle Scholar
  77. Hui Y, Zheng M, Liu Z, Gao L (2009a) PCDD/Fs and dioxin-like PCBs in sediments from Yellow Estuary and Yangtze Estuary, China. Bull Environ Contam Toxicol 83:614–619. doi: 10.1007/s00128-009-9832-3 CrossRefGoogle Scholar
  78. Hui Y, Zheng M, Liu Z, Gao L (2009b) Distribution of polycyclic aromatic hydrocarbons in sediments from Yellow River Estuary and Yangtze River Estuary, China. J Environ Sci 21:1625–1631. doi: 10.1016/S1001-0742(08)62465-1 CrossRefGoogle Scholar
  79. Huisman P, De Jong J, Wieriks K (2000) Transboundary cooperation in shared river basins: experiences from the Rhine, Meuse and North Sea. Water Policy 2:83–97CrossRefGoogle Scholar
  80. IARC (International Agency for Research on Cancer) (1997) Chlorinated drinking water, chlorination by-products, some other halogenated compounds, vol 52. Cobalt and Cobalt Compounds, Lyon, http://monographs.iarc.fr/ENG/Monographs/vol52/volume52.pdf Google Scholar
  81. ICPR (International Commission for the Protection of the Rhine) (2009) Sediment management plan—Rhine Summary Report No. 175. ICPR, Koblenz. Available at http://www.iksr.org/fileadmin/user_upload/Dokumente_en/Reports/Bericht_175e.pdf
  82. IOMC (Inter-Organization Programme for the Sound Management of Chemicals) (1999) Guidelines for the identification of PCBs and materials containing PCBs. Available at http://www.chem.unep.ch/publications/pdf/guididpcb.pdf
  83. Jarosova A (2006) Phthalic acid esters (PAEs) in the food chain. Czech Journal of Food Sciences 24:223–231Google Scholar
  84. Jin Y, Liu W, Sato I, Nakayama SF, Sasaki K, Saito N, Tsuda S (2009) PFOS and PFOA in environmental and tap water in China. Chemosphere 77:605–611. doi: 10.1016/j.chemosphere.2009.08.058 CrossRefGoogle Scholar
  85. Jin YH, Ding M, Zhai C, Wang L, Dong GH, Shu WQ (2006) An investigation of the PFOS and PFOA pollution in Three Gorges Reservior areas of the Yangtze River and surface water of Wuhan areas. Ecol Environ 15:486–489 (in Chinese)Google Scholar
  86. Jobling S, Sheahan D, Osborne JA, Matthiessen P, Sumpter JP (1996) Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ Toxicol Chem 15:194–202. doi: 10.1002/etc.5620150218 Google Scholar
  87. Keiter S, Grund S, van Bavel B, Hagberg J, Engwall M, Kammann U, Klempt M, Manz W, Olsman H, Braunbeck T, Hollert H (2008) Activities and identification of aryl hydrocarbon receptor agonists in sediments from the Danube River. Anal Bioanal Chem 390:2009–2019. doi: 10.1007/s00216-007-1652-x CrossRefGoogle Scholar
  88. Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, Flick RW (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci 104:8897–8901. doi: 10.1073/pnas.0609568104 CrossRefGoogle Scholar
  89. Kiersch K, Jandl G, Meissner R, Leinweber P (2010) Small scale variability of chlorinated POPs in the river Elbe floodplain soils (Germany). Chemosphere 79:745–753. doi: 10.1016/j.chemosphere.2010.02.041 CrossRefGoogle Scholar
  90. King WD, Marrett LD (1996) Case–control study of bladder cancer and chlorination by-products in treated water (Ontario, Canada). Cancer Causes and Control 7:596–604. doi: 10.1007/BF00051702 CrossRefGoogle Scholar
  91. Koivusalo M, Pukkala E, Vartiainen T, Jaakkola JJK, Hakulinen T (1997) Drinking water chlorination and cancer—a historical cohort study in Finland. Cancer Causes and Control 8:192–200. doi: 10.1023/A:1018420229802 CrossRefGoogle Scholar
  92. Kosmehl T, Krebs F, Manz W, Erdinger L, Braunbeck T, Hollert H (2004) Comparative genotoxicity testing of Rhine River sediment extracts using the comet assay with permanent fish cell lines (RTG-2 and RTL-W1) and the Ames test. Journal of Soils and Sediments 4:84–94. doi: 10.1007/BF02991050 CrossRefGoogle Scholar
  93. Lewis WM Jr, Morris DP (1986) Toxicity of nitrite to fish: a review. Trans Am Fish Soc 115:183–195, doi: 10.1577/1548-8659(1986)115<183:TONTF>2.0.CO;2CrossRefGoogle Scholar
  94. Li B, Feng C, Li X, Chen Y, Niu J, Shen Z (2012a) Spatial distribution and source apportionment of PAHs in surficial sediments of the Yangtze Estuary, China. Mar Pollut Bull 64:636–643. doi: 10.1016/j.marpolbul.2011.12.005 CrossRefGoogle Scholar
  95. Li F, Zhang C, Qu Y, Chen J, Chen L, Liu Y, Zhou Q (2010) Quantitative characterization of short- and long-chain perfluorinated acids in solid matrices in Shanghai, China. Sci Total Environ 408:617–623. doi: 10.1016/j.scitotenv.2009.10.032 CrossRefGoogle Scholar
  96. Li P (2006) Study on target organic toxicity induced by organic extract from Jialing River in Chongqing city. Dissertation,Third Military Medical University (in Chinese)Google Scholar
  97. Li X, Jia L, Zhao Y, Wang Q, Cheng Y (2009) Seasonal bioconcentration of heavy metals in Onchidium struma (Gastropoda: Pulmonata) from Chongming Island, the Yangtze Estuary, China. J Environ Sci 21:255–262. doi: 10.1016/S1001-0742(08)62260-3 CrossRefGoogle Scholar
  98. Li YQ, Shen YF (2010) Genotoxicity estimation of the pollution of Yangtze River in Jiangsu with fish micronucleus test. Environmental Monitoring in China 26:63–66 (in Chinese)Google Scholar
  99. Li YY, Lin T, Chen YJ, Hu LM, Guo ZG, Zhang G (2012b) Polybrominated diphenyl ethers (PBDEs) in sediments of the coastal East China Sea: occurrence, distribution and mass inventory. Environ Pollut 171:155–161. doi: 10.1016/j.envpol.2012.07.039 CrossRefGoogle Scholar
  100. Li ZL, Li YQ, Chen HG, Xu Y, Kong ZM, Liu ZT (2006) Evaluation of genotoxic effects induced by organic pollutants in the Yangtze River in Nanjing section. Research of Environmental Science 19:105–108 (in Chinese)CrossRefGoogle Scholar
  101. Liu C, Yuan GL, Yang ZF, Yu T, Xia XQ, Hou QY, Chen L (2011a) Levels of organochlorine pesticides in natural water along the Yangtze River, from headstream to estuary, and factors determining these levels. Environmental Earth Sciences 62:953–960. doi: 10.1007/s12665-010-0580-9 CrossRefGoogle Scholar
  102. Liu G, Huang Q, Li J, Runhui KE (2007) Study on organochlorine pesticides in surface sediments of the south branch of Yangtze estuary. China Environmental Science 27:503–507 (in Chinese)Google Scholar
  103. Liu HL, Liu M, Yang Y, Xu SY, Cheng SB (2004) Polychlorinated biphenyls and organochlorine pesticides in animals from the Yangtze River estuary and coastal areas. Huanjing Kexue (Environmental Science) 25:69–73 (in Chinese)Google Scholar
  104. Liu JK, Cao WX (1992) Fish resources of the Yangtze River basin and the tactics for their conservation. Resources and Environment in the Yangtze Valley 1:17–22 (in Chinese)Google Scholar
  105. Liu M, Baugh PJ, Hutchinson SM, Yu L, Xu S (2000) Historical record and sources of polycyclic aromatic hydrocarbons in core sediments from the Yangtze Estuary, China. Environ Pollut 110:357–65. doi: 10.1016/S0269-7491(99)00292-4 CrossRefGoogle Scholar
  106. Liu M, Hou L, Yang Y, Zou H, Lu J, Wang X (2001) Distribution and sources of polycyclic aromatic hydrocarbons in intertidal flat surface sediments from the Yangtze estuary, China. Environ Geol 41:90–95. doi: 10.1007/s002540100347 CrossRefGoogle Scholar
  107. Liu M, Yang Y, Hou L, Xu S, Ou D, Zhang B, Liu Q (2003) Chlorinated organic contaminants in surface sediments from the Yangtze Estuary and nearby coastal areas, China. Mar Pollut Bull 46:672–676. doi: 10.1016/S0025-326X(03)000500-X CrossRefGoogle Scholar
  108. Liu M, Cheng S, Ou D, Yang Y, Liu H, Hou L, Gao L, Xu S (2008a) Organochlorine pesticides in surface sediments and suspended particulate matters from the Yangtze estuary, China. Environ Pollut 156:168–173. doi: 10.1016/j.envpol.2007.12.015 CrossRefGoogle Scholar
  109. Liu SG, Zhu ZL, Fan CF, Qiu YL, Zhao JF (2011b) Seasonal variation effects on the formation of trihalomethane during chlorination of water from Yangtze River and associated cancer risk assessment. J Environ Sci 23:1503–1511. doi: 10.1016/S1001-0742(10)60573-6 CrossRefGoogle Scholar
  110. Liu SP, Duan XB, Chen DQ, Liao FC, Chen W (2005) Studies on status of fishery resources in the middle reaches of the Yangtze River. Acta Hydrobiologica Sinica 29:708–711 (in Chinese)Google Scholar
  111. Liu Y, Chen L, Zhao J, Huang Q, Zhu Z, Gao H (2008b) Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of rivers and an estuary in Shanghai, China. Environ Pollut 154:298–305. doi: 10.1016/j.envpol.2007.10.020 CrossRefGoogle Scholar
  112. Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97. doi: 10.1007/BF02472006 CrossRefGoogle Scholar
  113. Lu GH, Song WT, Wang C, Yan ZH (2010a) Assessment of in vivo estrogenic response and the identification of environmental estrogens in the Yangtze River (Nanjing section). Chemosphere 80:982–990. doi: 10.1016/j.chemosphere.2010.05.038 CrossRefGoogle Scholar
  114. Lu GH, Zhang HZ, Wang C (2010b) Assessment of estrogenic activity conducted by combining bioassay and chemical analyses of the effluent from wastewater treatment plants in Nanjing, China. Environ Toxicol Chem 29:1279–1286. doi: 10.1002/etc.155 Google Scholar
  115. Lu GH, Yang YL, Taniyasu S, Yeung LWY, Pan J, Zhou BS, Lam PKS, Yamashita N (2011) Potential exposure of perfluorinated compounds to Chinese in Shenyang and Yangtze River Delta areas. Environ Chem 8:407–418. doi: 10.1071/EN10139 CrossRefGoogle Scholar
  116. Lu WQ, Chen D, Wu XJ, Liu AL, Liu H, Wu JJ, Mersch-Sundermann V (2004) DNA damage caused by extracts of chlorinated drinking water in human derived liver cells (HepG2). Toxicology 198:351–357. doi: 10.1016/j.tox.2004.02.011 CrossRefGoogle Scholar
  117. Luebke RW, Copeland CB, Daniels M, Lambert AL, Gilmour MI (2001) Suppression of allergic immune responses to house dust mite (HDM) in rats exposed to 2,3,7,8-TCDD. Toxicol Sci 62:71–79. doi: 10.1093/toxsci/62.1.71 CrossRefGoogle Scholar
  118. Luo GY, Lian Y, Xu XY, Cai WL, Du X, Li P, Cao J, Shu FQ (2009) Pollution and assessment of phthalic acid esters of the Yangtze River and Jialing River in Chongqing. Environment and Ecology in the Three Gorges 3(43–48):55 (in Chinese)Google Scholar
  119. Luo XJ, Mai BX, Yang QS, Fu JM, Sheng GY, Wang ZS (2004) Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China. Mar Pollut Bull 48:1102–1115. doi: 10.1016/j.marpolbul.2003.12.018 CrossRefGoogle Scholar
  120. Ma JZ, Shen XQ, Yuan Q, Jiang M (2008) Concentrations and distribution of organochlorine pesticides in shellfish from Changjiang estuary. Chin J Oceanol Limnol 26:388–393. doi: 10.1007/s00343-008-0388-6 CrossRefGoogle Scholar
  121. Mai BX, Fu JM, Sheng GY, Kang YH, Lin Z, Zhang G, Min YS, Zeng EY (2002) Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environ Pollut 117:457–474. doi: 10.1016/S0269-7491(01)00193-2 CrossRefGoogle Scholar
  122. McConnell LL, Cotham WE, Bidleman TF (1993) Gas exchange of hexachlorocyclohexane in the Great Lakes. Environ Sci Technol 27:1304–1311. doi: 10.1021/es00044a003 CrossRefGoogle Scholar
  123. McCoy EC, Rosenkranz EJ, Rosenkranz HS, Mermelstein R (1981) Nitrated fluorene derivatives are potent frameshift mutagens. Mutation Research-Genetic Toxicology 90:11–20. doi: 10.1016/0165-1218(81)90046-X CrossRefGoogle Scholar
  124. McDonald TA (2002) A perspective on the potential health risks of PBDEs. Chemosphere 46:745–755. doi: 10.1016/S0045-6535(01)00239-9 CrossRefGoogle Scholar
  125. McPherson A, Thorpe B, Blake A (2004) Brominated flame retardants in dust on computers: the case for safer chemicals and better computer design. Available at http://www.electronicstakeback.com/wp-content/uploads/bfr_report_pages1-43
  126. Metcalf RL (1973) Century of DDT. J Agric Food Chem 21:511–519. doi: 10.1021/jf60188a040 CrossRefGoogle Scholar
  127. MEP (Ministry of Environmental Protection of the People’s Republic of China) (2002) Environmental quality standards for surface water (GB3838-2002) (in Chinese)Google Scholar
  128. Ministry of Health of the People’s Republic of China (2006) Standard for drinking water quality (GB 5749-2006) (in Chinese)Google Scholar
  129. Morrison HA, Whittle DM, Haffner GD (2002) A comparison of the transport and fate of polychlorinated biphenyl congeners in three Great Lakes food webs. Environ Toxicol Chem 21:683–692. doi: 10.1897/1551-5028(2002)021<0683:ACOTTA>2.0.CO;2 CrossRefGoogle Scholar
  130. Mueller B, Berg M, Yao ZP, Zhang XF, Wang D, Pfluger A (2008) How polluted is the Yangtze River? Water quality downstream from the Three Gorges Dam. Sci Total Environ 402:232–247. doi: 10.1016/j.scitotenv.2008.04.049 CrossRefGoogle Scholar
  131. Müller JF, Gaus C, Prange JA, Papke O, Poon KF, Lam MHW, Lam PKS (2002) Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in sediments from Hong Kong. Mar Pollut Bull 45:372–378. doi: 10.1016/S0025-326X(01)00326-5 CrossRefGoogle Scholar
  132. Myers MS, Johnson LL, Hom T, Collier TK, Stein JE, Varanasi U (1998) Toxicopathic hepatic lesions in subadult English sole (Pleuronectes vetuls) from Puget Sound, Washington, USA: relationships with other biomarkers of contaminant exposure. Mar Environ Res 45:47–67. doi: 10.1016/S0141-1136(97)00021-4 CrossRefGoogle Scholar
  133. Ni HG, Zeng EY (2009) Law enforcement and global collaboration are the keys to containing e-waste tsunami in China. Environ Sci Technol 43:3991–3994. doi: 10.1021/es802725m CrossRefGoogle Scholar
  134. Ni HG, Zeng H, Tao S, Zeng EY (2010) Environmental and human exposure to persistent halogenated compounds derived from e-waste in China. Environ Toxicol Chem 29:1237–1247. doi: 10.1002/etc.160 Google Scholar
  135. Nunes M, Marchand P, Vernisseau A, Le Bizec B, Ramos F, Pardal MA (2011) PCDD/Fs and dioxin-like PCBs in sediment and biota from the Mondego estuary (Portugal). Chemosphere 83:1345–1352. doi: 10.1016/j.chemosphere.2011.02.081 CrossRefGoogle Scholar
  136. OECD (Organization for Economic Cooperation and Development) (2002) Hazard assessment of perfluorooctane sulfonate (PFOS) and its salt. ENV/JM/RD(2002)17/FINAL. Available at http://www.oecd.org/chemicalsafety/risk-assessment/2382880.pdf
  137. Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in surface waters: a review. Mutat Res Rev Mutat Res 567:109–149. doi: 10.1016/j.mrrev.2004.08.003 CrossRefGoogle Scholar
  138. Ohura T (2007) Environmental behavior, sources, and effects of chlorinated polycyclic aromatic hydrocarbons. The Scientific World Journal 7:372–380. doi: 10.1100/tsw.2007.75 CrossRefGoogle Scholar
  139. Ortiz-Delgado JB, Segner H, Arellano M, Sarasquete C (2007) Histopathological alterations, EROD activity, CYP1A protein and biliary metabolites in gilthead seabream Sparus aurata exposed to benzo(a) pyrene. Histol Histopathol 22:417–432Google Scholar
  140. Ou D, Liu M, Xu S, Cheng S, Hou L, Wang L (2009) Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in overlying waters and surface sediments from the Yangtze estuarine and coastal. Huanjing Kexue (Environmental Science) 30:3043–3049 (in Chinese)Google Scholar
  141. Pan G, You C (2010) Sediment–water distribution of perfluorooctane sulfonate (PFOS) in Yangtze River Estuary. Environ Pollut 158:1363–1367. doi: 10.1016/j.envpol.2010.01.011 CrossRefGoogle Scholar
  142. Pereira WE, Hostettler FD, Rapp JB (1996) Distributions and fate of chlorinated pesticides, biomarkers and polycyclic aromatic hydrocarbons in sediments along a contamination gradient from a point-source in San Francisco Bay, California. Mar Environ Res 41:299–314. doi: 10.1016/0141-1136(95)00021-6 CrossRefGoogle Scholar
  143. Ping XY (2011) Distribution characteristics of five kinds of endocrine disrupting chemicals in Yangtze River Estuary and adjcent areas. 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, pp 7486–7489Google Scholar
  144. Platikanov S, Tauler R, Rodrigues PMSM, Antunes MCG, Pereira D, Esteves da Silva JCG (2010) Factorial analysis of the trihalomethane formation in the reaction of colloidal, hydrophobic, and transphilic fractions of DOM with free chlorine. Environ Sci Pollut Res 17:1389–1400. doi: 10.1007/s11356-010-0320-4 CrossRefGoogle Scholar
  145. Poland A, Knutson JC (1982) 2,3,7,8-Tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol 22:517–554. doi: 10.1146/annurev.pa.22.040182.002505 CrossRefGoogle Scholar
  146. Qiu ZQ, Shu WQ, Tian HJ (2003) An analysis of the organic extracts from source water and drinking water in city C and the effects on DNA damage in primary hepatocytes in rats. Acta Academiae Medicinate Militaris Tertlae 25:423–426 (in Chinese)Google Scholar
  147. Reifferscheid G, Ziemann C, Fieblinger D, Dill F, Gminski R, Grummt H-J, Hafner C, Hollert H, Kunz S, Rodrigo G, Stopper H, Selke D (2008) Measurement of genotoxicity in wastewater samples with the in vitro micronucleus test—results of a round-robin study in the context of standardisation according to ISO. Mutat Res Genet Toxicol Environ Mutagen 649:15–27. doi: 10.1016/j.mrgentox.2007.07.015 CrossRefGoogle Scholar
  148. Reifferscheid G, Maes HM, Allner B, Badurova J, Belkin S, Bluhm K, Brauer F, Bressling J, Domeneghetti S, Elad T, Flückiger-Isler S, Grummt HJ, Gürtler R, Hecht A, Heringa MB, Hollert H, Huber S, Kramer M, Magdeburg A, Ratte HT, Sauerborn-Klobucar R, Sokolowski A, Soldan P, Smital T, Stalter D, Venier P, Ziemann C, Zipperle J, Buchinger S (2012) International round-robin study on the Ames fluctuation test. Environ Mol Mutagen 53:185–197. doi: 10.1002/em.21677 CrossRefGoogle Scholar
  149. Ritter L, Solomon KR, Forget J (1995) Persistent organic pollutants: an assessment report on: DDT–aldrin–dieldrin–endrin–chlordane, heptachlor–hexachlorobenzene, mirex–toxaphene, polychlorinated biphenyls, dioxins and furans. Canadian Network of Toxicology Centres, Canada. Available at http://www.chem.unep.ch/pops/ritter/en/ritteren.pdf
  150. Rocha PS (2009) Sediment ecotoxicology: identification of hazard factors and ecotoxicological risks in the Tietê River Basin (Brazil). Dissertation, Heidelberg University, Germany. Available at http://www.ub.uni-heidelberg.de/archiv/10171
  151. Scholz-Starke B, Ottermanns R, Rings U, Floehr T, Hollert H, Hou J, Li B, Wu L, Yuan X, Strauch K, Wei H, Norra S, Holbach A, Westrich B, Schäffer A, Roß-Nickoll M (2013) An integrated approach to model the biomagnification of organic pollutants in aquatic food webs of the Yangtze Three Gorges Reservoir ecosystem using adapted pollution scenarios. Environmental Science and Pollution Research 1–18. doi: 10.1007/s11356-013-1504-5
  152. Seiler JP (1991) Pentachlorophenol. Mutat Res 257:27–47. doi: 10.1016/0165-1110(91)90018-q CrossRefGoogle Scholar
  153. Shailaja M, Rodrigues A (2003) Nitrite-induced enhancement of toxicity of phenanthrene in fish and its implications for coastal waters. Estuarine Coastal Shelf Sci 56:1107–1110. doi: 10.1016/S0272-7714(02)00311-6 CrossRefGoogle Scholar
  154. Shailaja M, Rajamanickam R, Wahidulla S (2006a) Increased formation of carcinogenic PAH metabolites in fish promoted by nitrite. Environ Pollut 143:174–177. doi: 10.1016/j.envpol.2005.10.043 CrossRefGoogle Scholar
  155. Shailaja M, Rajamanickam R, Wahidulla S (2006b) Formation of genotoxic nitro-PAH compounds in fish exposed to ambient nitrite and PAH. Toxicol Sci 91:440–447. doi: 10.1093/toxsci/kfj151 CrossRefGoogle Scholar
  156. Shao B, Hu J, Yang M, An W, Tao S (2005) Nonylphenol and nonylphenol ethoxylates in river water, drinking water, and fish tissues in the area of Chongqing, China. Arch Environ Contam Toxicol 48:467–473. doi: 10.1007/s00244-003-0266-3 CrossRefGoogle Scholar
  157. Shao B, Hu JY, Yang M (2002) A survey of nonylphnol in aquatic environment of Chongqing vally. Acta Scientiae Circumstantiae 22:12–16 (in Chinese)Google Scholar
  158. Shen L, Wu JY, Lin GF, Shen JH, Westendorf J, Huehnerfuss H (2003a) The mutagenic potentials of tap water samples in Shanghai. Chemosphere 52:1641–1646. doi: 10.1016/S0045-6535(03)00504-6 CrossRefGoogle Scholar
  159. Shen L, Wu JY, Lin GR, Shen JH (2003b) Tap water genotoxic potentials associated with chlorination in a mega-city in Taihu Lake basin, eastern China. Toxicology 191:22–22Google Scholar
  160. Shen M, Yu Y, Zheng GJ, Yu H, Lam PK, Feng J, Wei Z (2006) Polychlorinated biphenyls and polybrominated diphenyl ethers in surface sediments from the Yangtze River Delta. Mar Pollut Bull 52:1299–1304. doi: 10.1016/j.envpol.2006.01.044 CrossRefGoogle Scholar
  161. Shi W, Wang X, Hu G, Hao Y, Zhang X, Liu H, Wei S, Wang X, Yu H (2011) Bioanalytical and instrumental analysis of thyroid hormone disrupting compounds in water sources along the Yangtze River. Environ Pollut 159:441–448. doi: 10.1016/j.envpol.2010.10.023 CrossRefGoogle Scholar
  162. Shi W, Zhang F, Hu G, Hao Y, Zhang X, Liu H, Wei S, Wang X, Giesy J, Yu H (2012) Thyroid hormone disrupting activities associated with phthalate esters in water sources from Yangtze River Delta. Environ Int 42:117–123. doi: 10.1016/j.envint.2011.05.013 CrossRefGoogle Scholar
  163. Shiraishi H, Pilkington NH, Otsuki A, Fuwa K (1985) Occurrence of chlorinated polynuclear aromatic hydrocarbons in tap water. Environ Sci Technol 19:585–590. doi: 10.1021/es00137a001 CrossRefGoogle Scholar
  164. Shu WQ, Tian HJ, Cao J, Wang YM (2002) Mutagenic activities and their season changes of organic extracts from sources water of Yangtze River and Jialing River in Chongqing section. Environment Pollution and Control 24(224–228):239 (in Chinese)Google Scholar
  165. So MK, Miyake Y, Yeung WY, Ho YM, Taniyasu S, Rostkowski P, Yamashita N, Zhou BS, Shi XJ, Wang JX, Giesy JP, Yu H, Lam PKS (2007) Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere 68:2085–2095. doi: 10.1016/j.chemosphere.2007.02.008 CrossRefGoogle Scholar
  166. Soares A, Guieysse B, Jefferson B, Cartmell E, Lester J (2008) Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34:1033. doi: 10.1016/j.envint.2008.01.004 CrossRefGoogle Scholar
  167. Song WT, Lu GH, Wang C, Zhang HZ, Xu S, Qin J (2010) Study on environmental estrogen pollution in Yangtze River (Nanjing section) by an in vivo bioassay. Bull Environ Contam Toxicol 84:406–412. doi: 10.1007/s00128-010-9944-9 CrossRefGoogle Scholar
  168. Stahl T, Mattern D, Brunn H (2011) Toxicology of perfluorinated compounds. Environ Sci Eur 23:38. doi: 10.1186/2190-4715-23-38 CrossRefGoogle Scholar
  169. Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173. doi: 10.1016/s0045-6535(97)10133-3 CrossRefGoogle Scholar
  170. SOA (State Oceanic Administration of People’s Republic of China) (2001) Marine biological quality (GB18421-2001) (in Chinese)Google Scholar
  171. Su G, Gao Z, Yu Y, Ge J, Wei S, Feng J, Liu F, Giesy JP, Lam MHW, Yu H (2010) Polybrominated diphenyl ethers and their methoxylated metabolites in anchovy (Coilia sp.) from the Yangtze River Delta, China. Environ Sci Pollut Res Int 17:634–642. doi: 10.1007/s11356-009-0236-z CrossRefGoogle Scholar
  172. Su G, Xia J, Liu H, Lam MHW, Yu H, Giesy JP, Zhang X (2012) Dioxin-like potency of OH- and MeO- analogues of PBDEs’ the potential risk through consumption of fish from Eastern China. Environ Sci Technol 46:10781–10788. doi: 10.1021/es302317y CrossRefGoogle Scholar
  173. Suja F, Pramanik BK, Zain SM (2009) Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: a review paper. Water Sci Technol 60:1533–1544. doi: 10.2166/wst.2009.50 CrossRefGoogle Scholar
  174. Sumpter JP, Jobling S (1995) Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Heal Perspect 103:173–178. doi: 10.2307/3432529 Google Scholar
  175. Sun C, Dong Y, Xu S, Yao S, Dai J, Han S, Wang L (2002) Trace analysis of dissolved polychlorinated organic compounds in the water of the Yangtse River (Nanjing, China). Environ Pollut 117:9–14. doi: 10.1016/S0269-7491(01)00169-5 CrossRefGoogle Scholar
  176. Sun JH, Chai Y, Zhang G, Li J, Wang WL (2009) Content and distribution of organic chlorine pesticide in the middle and lower Yellow River. Yellow River 31:43–45,120 (in Chinese)Google Scholar
  177. Sun YZ, Zhang B, Gao LR, Liu ZT, Zheng MH (2005) Polychlorinated dibenzo-p-dioxins and dibenzofurans in surface sediments from the estuary area of Yangtze River, People’s Republic of China. Bull Environ Contam Toxicol 75:910–914. doi: 10.1007/s00128-005-0836-3 CrossRefGoogle Scholar
  178. Tang Z, Yang Z, Shen Z, Niu J (2007a) Pentachlorophenol residues in suspended particulate matter and sediments from the Yangtze River catchment of Wuhan, China. Bull Environ Contam Toxicol 78:158–162. doi: 10.1007/s00128-007-9017-x CrossRefGoogle Scholar
  179. Tang Z, Yang Z, Shen Z, Niu J, Liao R (2007b) Distribution and sources of organochlorine pesticides in sediments from typical catchment of the Yangtze River, China. Arch Environ Contam Toxicol 53:303–312. doi: 10.1007/s00244-006-0224-y CrossRefGoogle Scholar
  180. Tang Z, Yang Z, Shen Z, Niu J, Cai Y (2008) Residues of organochlorine pesticides in water and suspended particulate matter from the Yangtze River catchment of Wuhan, China. Environ Monit Assess 137:427–439. doi: 10.1007/s10661-007-9778-z CrossRefGoogle Scholar
  181. Tang Z, Liao HQ, Zhang L, Guo JY, Wu FC, Guo F, Zhou BH (2011) Distribution, source and risk assessment of polycyclic aromatic hydrocarbons in river sediment of Cheng-Yu economic zone. Huanjing Kexue (Environmental Science) 32:2639–2644 (in Chinese)Google Scholar
  182. Tian HJ, Shu WQ, Zhang XK, Wang YM, Cao J (2003) Organic pollutants in source water in Jialing River and Yangtze River (Chongqing section). Resoureces and Environment in the Yangtze Basin 12:118–123 (in Chinese)Google Scholar
  183. Tillitt DE, Giesy JP, Ankley GT (1991) Characterization of the H4IIE rat hepatoma cell bioassay as a tool for assessing toxic potency of planar halogenated hydrocarbons in environmental samples. Environ Sci Technol 25:87–92. doi: 10.1021/es00013a007 CrossRefGoogle Scholar
  184. Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119. doi: 10.1016/j.envpol.2011.10.025 CrossRefGoogle Scholar
  185. Triebskorn R, Amler K, Blaha L, Gallert C, Giebner S, Gude H, Henneberg A, Hess S, Hetzenauer H, Jedele K, Jung R-M, Kneipp S, Kohler H-R, Krais S, Kuch B, Lange C, Loffler H, Maier D, Metzger J, Muller M, Oehlmann J, Osterauer R, Peschke K, Raizner J, Rey P, Rault M, Richter D, Sacher F, Scheurer M, Schneider-Rapp J, Seifan M, Spieth M, Vogel H-J, Weyhmuller M, Winter J, Wurm K (2013) SchussenAktivplus: reduction of micropollutants and of potentially pathogenic bacteria for further water quality improvement of the river Schussen, a tributary of Lake Constance, Germany. Environ Sci Eur 25:2. doi: 10.1186/2190-4715-25-2 CrossRefGoogle Scholar
  186. Turusov V, Rakitsky V, Tomatis L (2002) Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environ Heal Perspect 110:125CrossRefGoogle Scholar
  187. UKCOM (United Kingdom Committee on Mutagenicity of Chemicals in Food, Consumer Products and the Environment) (2000) Guidance on a strategy for testing of chemicals for mutagenicity. Available at http://www.iacom.org.uk/publications/documents/guidance.pdf
  188. UKCOM (United Kingdom Committee on Mutagenicity of Chemicals in Food, Consumer Products and the Environment) (2012) Human health significance of mutagenicity. MUT/2012/01. Available at http://www.iacom.org.uk/papers/documents/MUT20121.pdf
  189. UNEP (United Nation Environmental Programme) (2002) Regionally based assessment of persistent toxic substances: central and north east Asia regional report. Global Environmental Facility, Geneva, Switzerland. Available at http://www.chem.unep.ch/pts/gr/Global_Report.pdf
  190. USEPA webpage—TACO (United States Environmental Protection Agency). Tiered approach to corrective action objectives (TACO) fact sheet 2: risk. Available at http://www.epa.state.il.us/land/taco/2-risk.html
  191. USEPA webpage—risk characterization (United States Environmental Protection Agency). Risk characterization. Available at http://www.epa.gov/region8/r8risk/hh_risk.html
  192. USEPA (United States Environmental Protection Agency) (2012) EPA’s reanalysis of key issues related to dioxin toxicity and response to NAS comments, volume 1. CAS No. 1746-01-6. USEPA, Washington, DC. Available at http://www.epa.gov/iris/supdocs/dioxinv1sup.pdf
  193. USEPA (United States Environmental Protection Agency) (1989) Risk assessment guidance for superfund. EPA/540/1-89/002. USEPA, Washington, DC. Available at http://rais.ornl.gov/documents/HHEMA.pdf
  194. USEPA (United States Environmental Protection Agency) (2005) Guidelines for carcinogen risk assessment. EPA/630/P03/001F. Available at http://www.chem.unep.ch/pts/gr/Global_Report.pdf
  195. USEPA (United States Environmental Protection Agency) (2008) Emerging pollutants of concern—a survey of states activies and future needs. EPA Water Quality Standards Workgroup. Available at http://www.sawpa.org/documents/EC-Appendix-F.pdf
  196. USEPA (United States Environmental Protection Agency) (2009a) National recommended water quality criteria. Available at http://water.epa.gov/scitech/swguidance/standards/criteria/current/upload/nrwqc-2009.pdf
  197. USEPA (United States Environmental Protection Agency) (2009b) Federal-state toxicology and risk analysis committee meeting USEPA. Available at http://water.epa.gov/scitech/research-riskassess/fstrac/upload/102009day1.pdf
  198. Van den Berg M, De Jongh J, Poiger H, Olson JR (1994) The toxicokinetics and metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and their relevance for toxicity. CRC Crit Rev Toxicol 24:1–74. doi: 10.3109/10408449409017919 CrossRefGoogle Scholar
  199. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137CrossRefGoogle Scholar
  200. Vierke L, Staude C, Biegel-Engler A, Drost W, Schulte C (2012) Perfluorooctanoic acid (PFOA)—main concerns and regulatory developments in Europe from an environmental point of view. Environ Sci Eur 24:16. doi: 10.1186/2190-4715-24-16 CrossRefGoogle Scholar
  201. Vijgen J, Abhilash PC, Li Y, Lal R, Forter M, Torres J, Singh N, Yunus M, Tian C, Schäffer A, Weber R (2011) Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs—a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res 18:152–162. doi: 10.1007/s11356-010-0417-9 CrossRefGoogle Scholar
  202. Villeneuve DL, Khim JS, Kannan K, Giesy JP (2001) In vitro response of fish and mammalian cells to complex mixtures of polychlorinated naphthalenes, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Aquat Toxicol 54:125–141. doi: 10.1016/S0166-445X(00)00171-5 CrossRefGoogle Scholar
  203. Vom Saal FS, Hughes C (2005) An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ Heal Perspect 113:926–933. doi: 10.1289/ehp.7713 CrossRefGoogle Scholar
  204. Waller K, Swan SH, DeLorenze G, Hopkins B (1998) Trihalomethanes in drinking water and spontaneous abortion. Epidemiology 134–140Google Scholar
  205. Wan Y, Wiseman S, Chang H, Zhang X, Jones PD, Hecker M, Kannan K, Tanabe S, Hu J, Lam MHW, Giesy JP (2009) Origin of hydroxylated brominated diphenyl ethers: natural compounds or man-made flame retardants? Environ Sci Technol 43:7536–7542. doi: 10.1021/es901357u CrossRefGoogle Scholar
  206. Wan Y, Liu FY, Wiseman S, Zhang XW, Chang H, Hecker M, Jones PD, Lam MHW, Giesy JP (2010) Interconversion of hydroxylated and methoxylated polybrominated diphenyl ethers in Japanese medaka. Environ Sci Technol 44:8729–8735. doi: 10.1021/es102287q CrossRefGoogle Scholar
  207. Wang B, Lino F, Yu G, Huang J, Morita M (2010a) The pollution status of emerging persistent organic pollutants in China. Environ Eng Sci 27:215–225. doi: 10.1089/ees.2009.0337 CrossRefGoogle Scholar
  208. Wang C, Lu G, Song W, Xu S, Wang P (2010b) Integrated biomarker response index for the assessment of environmental stress of the Yangtze River (Nanjing section). Fish Physiology and Biochemistry 36:1069–1078. doi: 10.1007/s10695-010-9384-9 CrossRefGoogle Scholar
  209. Wang CH, Peng B (2002) Analysis of micro organic compound pollution in major city river reaches of the main stream of the Changjiang River. Yangtze River Supplement, 4–9Google Scholar
  210. Wang F, Sha YJ, Xia XH, Liu H (2008) Distribution characteristics of phthalic acid esters in the Wuhan section of the Yangtze River. Environmental Science & Policy 29:1163–1169 (in Chinese)Google Scholar
  211. Wang H, Zhou Y, Wang X, Qu W, Jiang Q (2012a) Screening and assessing the phenols in water environment of Shanghai city. Fudan Xuebao (Yixueban) 39:231–237 (in Chinese)Google Scholar
  212. Wang J, Bi Y, Pfister G, Henkelmann B, Zhu K, Schramm K-W (2009) Determination of PAH, PCB, and OCP in water from the Three Gorges Reservoir accumulated by semipermeable membrane devices (SPMD). Chemosphere 75:1119–1127. doi: 10.1016/j.chemosphere.2009.01.016 CrossRefGoogle Scholar
  213. Wang TY, Lu YL, Zhang H, Shi YJ (2005) Contamination of persistent organic pollutants (POPs) and relevant management in China. Environ Int 31:813–821. doi: 10.1016/j.envint.2005.05.043 CrossRefGoogle Scholar
  214. Wang X, Wu J, Hao Y, Zhu B, Shi W, Hu G, Han X, Giesy JP, Yu H (2011) Reproductive toxicity assessment of surface water of the Tai section of the Yangtze River, China by in vitro bioassays coupled with chemical analysis. Environ Pollut 159:2720–2725. doi: 10.1016/j.envpol.2011.05.019 CrossRefGoogle Scholar
  215. Wang Y, Li X, Li BH, Shen ZY, Feng CH, Chen YX (2012b) Characterization, sources, and potential risk assessment of PAHs in surface sediments from nearshore and farther shore zones of the Yangtze estuary, China. Environmental Science and Pollution Research, 1–11. doi: 10.1007/s11356-012-0952-7
  216. Wang Z, Chen J, Yang P, Qiao X, Tian F (2007) Polycyclic aromatic hydrocarbons in Dalian soils: distribution and toxicity assessment. J Environ Monit 9:199–204. doi: 10.1039/b617338c CrossRefGoogle Scholar
  217. Wen S, Hui Y, Yang F, Liu Z, Xu Y (2008) Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in surface sediment and bivalve from the Changjiang Estuary, China. Chin J Oceanol Limnol 26:35–44. doi: 10.1007/s00343-008-0035-2 CrossRefGoogle Scholar
  218. Wetterauer B, Ricking M, Otte JC, Hallare AV, Rastall A, Erdinger L, Schwarzbauer J, Braunbeck T, Hollert H (2012) Toxicity, dioxin-like activities, and endocrine effects of DDT metabolites—DDA, DDMU, DDMS, and DDCN. Environ Sci Pollut Res 19:403–415. doi: 10.1007/s11356-011-0570-9 CrossRefGoogle Scholar
  219. WHO/ICPs (1994) Environmental health criteria 152: polybrominated biphenyls. Available at http://www.inchem.org/documents/ehc/ehc/ehc152.htm
  220. Whyte JJ, Jung RE, Schmitt CJ, Tillitt DE (2000) Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit Rev Toxicol 30:347–570CrossRefGoogle Scholar
  221. Willett KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2207. doi: 10.1021/es9708530 CrossRefGoogle Scholar
  222. Wiseman SB, Wan Y, Chang H, Zhang XW, Hecker M, Jones PD, Giesy JP (2011) Polybrominated diphenyl ethers and their hydroxylated/methoxylated analogs: environmental sources, metabolic relationships, and relative toxicities. Mar Pollut Bull 63:179–188. doi: 10.1016/j.marpolbul.2011.02.008 CrossRefGoogle Scholar
  223. Wölz J, Engwall M, Maletz S, Takner HO, van Bavel B, Kammann U, Klempt M, Weber R, Braunbeck T, Hollert H (2008) Changes in toxicity and Ah receptor agonist activity of suspended particulate matter during flood events at the rivers Neckar and Rhine—a mass balance approach using in vitro methods and chemical analysis. Environ Sci Pollut Res 15:536–553. doi: 10.1007/s11356-008-0056-6 CrossRefGoogle Scholar
  224. Wölz J, Cofalla C, Hudjetz S, Roger S, Brinkmann M, Schmidt B, Schäffer A, Kammann U, Lennartz G, Hecker M (2009) In search for the ecological and toxicological relevance of sediment re-mobilisation and transport during flood events. Journal of Soils and Sediments 9:1–5. doi: 10.1007/s11368-008-0050-0 CrossRefGoogle Scholar
  225. Wong C, Williams C, Collier U, Schelle P, Pittock J (2007) World’s top 10 rivers at risk. World Wildlife Fund for Nature. Available at http://www.unwater.org/downloads/worldstop10riversatriskfinalmarch13_1.pdf
  226. Wu JG, Huang JH, Han XG, Gao XM, He FL, Jiang MX, Jiang ZG, Primack RB, Shen ZH (2004) The Three Gorges Dam: an ecological perspective. Front Ecol Environ 2:241–248. doi: 10.1890/1540-9295(2004)002[0241:TTGDAE]2.0.CO;2 CrossRefGoogle Scholar
  227. Wu JY (2005) Assessing surface water quality of the Yangtze Estuary with genotoxicity data. Mar Pollut Bull 50:1661–1667. doi: 10.1016/j.marpolbul CrossRefGoogle Scholar
  228. Wu LL, Chen L, Hou JL, Zhang YL, Zhao JF, Gao HW (2010) Assessment of sediment quality of Yangtze River Estuary using Zebrafish (Danio rerio) embryos. Environ Toxicol 25:234–242. doi: 10.1002/tox.20501 CrossRefGoogle Scholar
  229. Wu W, Schramm KW, Henkelmann B, Xu Y, Yediler A, Kettrup A (1997) PCDD/Fs, PCBs, HCHs and HCB in sediments and soils of Ya-Er Lake area in China: results on residual levels and correlation to the organic carbon and the particle size. Chemosphere 34:191–202. doi: 10.1016/S0045-6535(96)00351-7 CrossRefGoogle Scholar
  230. Xian Q, Ramu K, Isobe T, Sudaryanto A, Liu X, Gao Z, Takahashi S, Yu H, Tanabe S (2008) Levels and body distribution of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) in freshwater fishes from the Yangtze River, China. Chemosphere 71:268–276. doi: 10.1016/j.chemosphere.2007.09.032 CrossRefGoogle Scholar
  231. Xing Y, Lu Y, Dawson RW, Shi Y, Zhang H, Wang T, Liu W, Ren H (2005) A spatial temporal assessment of pollution from PCBs in China. Chemosphere 60:731–739. doi: 10.1016/j.chemosphere.2005.05.001 CrossRefGoogle Scholar
  232. Xu S, Jiang X, Dong Y, Sun C, Feng J, Wang L, Martens D, Gawlik BM (2000a) Polychlorinated organic compounds in Yangtze River sediments. Chemosphere 41:1897–1903. doi: 10.1016/S0045-6535(00)00058-8 CrossRefGoogle Scholar
  233. Xu S, Jiang X, Wang X, Tan Y, Sun C, Feng J, Wang L, Martens D, Gawlik BM (2000b) Persistent pollutants in sediments of the Yangtse River. Bull Environ Contam Toxicol 64:176–183. doi: 10.1007/s001289910027 CrossRefGoogle Scholar
  234. Xu S, Jiang X, Tang YR, Sun C, Wang LS (2000c) Determination of trace chlorophenols in Yangtze River sediments. Environ Chem 19:154–158 (in Chinese)Google Scholar
  235. Xu S, Jiang X, Wang LS, Quan X, Martens D (2000d) Polycyclic armomatic hydrocarbons (PAHs) pollutants in sediments of the Yangtze River and the Liaohe River. China Environmental Science 20:128–131 (in Chinese)Google Scholar
  236. Xu X, Nachtman JP, Jin Z, Wei E, Rappaport SM, Burlingame A (1982) Isolation and identification of mutagenic nitro-PAH in diesel-exhaust particulates. Anal Chim Acta 136:163–174. doi: 10.1016/S0003-2670(01)95375-9 CrossRefGoogle Scholar
  237. Yang G, Weng L, Li L (2008) Yangtze conservation and development report 2007. Changjiang Press, 17 (in Chinese)Google Scholar
  238. Yang G, Ma C, Chang, S (2009a) Yangtze conservation and development report 2009. Changjiang Press, 128 (in Chinese)Google Scholar
  239. Yang HY, Zhuo SS, Xue B, Zhang CL, Liu WP (2012) Distribution, historical trends and inventories of polychlorinated biphenyls in sediments from Yangtze River Estuary and adjacent East China Sea. Environ Pollut 169:20–26. doi: 10.1016/j.envpol.2012.05.003 CrossRefGoogle Scholar
  240. Yang L, Zhu L, Liu Z (2011) Occurrence and partition of perfluorinated compounds in water and sediment from Liao River and Taihu Lake, China. Chemosphere 83:806–814. doi: 10.1016/j.chemosphere.2011.02.075 CrossRefGoogle Scholar
  241. Yang RQ, Jiang GB, Zhou QF, Yuan CG, Shi JB (2005) Occurrence and distribution of organochlorine pesticides (HCH and DDT) in sediments collected from East China Sea. Environ Int 31:799–804. doi: 10.1016/j.envint.2005.05.027 CrossRefGoogle Scholar
  242. Yang Y, Liu M, Xu S, Hou L, Ou D, Liu H, Cheng S, Hofmann T (2006) HCHs and DDTs in sediment-dwelling animals from the Yangtze Estuary, China. Chemosphere 62:381–389. doi: 10.1016/j.chemosphere.2005.04.102 CrossRefGoogle Scholar
  243. Yang Z, Shen Z, Gao F, Tang Z, Niu J (2009b) Occurrence and possible sources of polychlorinated biphenyls in surface sediments from the Wuhan reach of the Yangtze River, China. Chemosphere 74:1522–1530. doi: 10.1016/j.chemosphere.2008.11.024 CrossRefGoogle Scholar
  244. Ye H, Zhou CH, Zeng XX (2009) Investigation of pollution characteristics of polychlorinated biphenyls in the typical drinking water sources in Jiangsu Province, China. Environ Monit Assess 158:573–579. doi: 10.1007/s10661-008-0604-z CrossRefGoogle Scholar
  245. Yuan J, Wu XJ, Lu WQ, Cheng XL, Chen D, Li XY, Liu AL, Wu JJ, Xie H, Stahl T, Mersch-Sundermann V (2005) Chlorinated river and lake water extract caused oxidative damage, DNA migration and cytotoxicity in human cells. Int J Hyg Environ Health 208:481–488. doi: 10.1016/j.ijheh.2005.09.002 CrossRefGoogle Scholar
  246. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515. doi: 10.1016/S0146-6380(02)00002-5 CrossRefGoogle Scholar
  247. Zhang J (1995) Geochemistry of trace-metals from Chinese river estuary system—an overview. Estuarine Coastal Shelf Sci 41:631–658. doi: 10.1006/ecss.1995.0082 CrossRefGoogle Scholar
  248. Zhang J, Zhang L (2010) Distribution and sources of polycyclic aromatic hydrocarbons in the upper and middle reaches of the Yellow River in summer. 2010 2nd Conference on Environmental Science and Information Application Technology (ESIAT), pp 191–194. doi: 10.1109/ESIAT.2010.5567307
  249. Zhang L, Shi S, Dong L, Zhang T, Zhou L, Huang Y (2011) Concentrations and possible sources of polychlorinated biphenyls in the surface water of the Yangtze River Delta, China. Chemosphere 85:399–405. doi: 10.1016/j.envpol.2006.01.044 CrossRefGoogle Scholar
  250. Zhang LF, Dong L, Ren LJ, Shi SX, Zhou L, Zhang T, Huang YR (2012a) Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China. Journal of Environmental Sciences-China 24:335–342. doi: 10.1016/S1001-0742(11)60782-1 CrossRefGoogle Scholar
  251. Zhang SK, Peng PA, Huang WL, Li XM, Zhang G (2009) PCDD/PCDF pollution in soils and sediments from the Pearl River Delta of China. Chemosphere 75:1186–1195. doi: 10.1016/j.chemosphere.2009.02.032 CrossRefGoogle Scholar
  252. Zhang Y, Meng W, Guo C, Xu J, Yu T, Fan W, Li L (2012b) Determination and partitioning behavior of perfluoroalkyl carboxylic acids and perfluorooctanesulfonate in water and sediment from Dianchi Lake, China. Chemosphere 88:1292–1299. doi: 10.1016/j.chemosphere.2012.03.10 CrossRefGoogle Scholar
  253. Zhao D, Cheng S, Wu B, Zhang Y, Zhang X, Li W, Cui Y (2009) Toxicity of the Yangtze River source of drinking water on reproductive system of male mice (Mus musculus). Ecotoxicology 18:729–735. doi: 10.1007/s10646-009-0337-y CrossRefGoogle Scholar
  254. Zhao G, Li K, Zhou H, Liu X, Zhang P, Wen W, Yu Y, Yuan H (2013) Polyhalogenated aromatic hydrocarbons in surface sediments from Three Gorges Reservoir. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 48:136–144. doi: 10.1080/03601234.2012.716737 CrossRefGoogle Scholar
  255. Zhao Q, Ren Q, Chen JA, Qiu ZQ, Cao J, Shu WQ (2011) Reproductive toxicity in male mice caused by organic extracts in tap water from the Jialing River in Chongqing, China. Birth Defects Research Part B Developmental and Reproductive Toxicology 92:1–9. doi: 10.1002/bdrb.20277 CrossRefGoogle Scholar
  256. Zheng GJ, Leung AOW, Jiao LP, Wong MH (2008) Polychlorinated dibenzo-p-dioxins and dibenzofurans pollution in China: sources, environmental levels and potential human health impacts. Environ Int 34:1050–1061. doi: 10.1016/j.envint.2008.02.011 CrossRefGoogle Scholar
  257. Zheng WW, Yu H, Wang X, Qu WD (2012) Systematic review of pentachlorophenol occurrence in the environment and in humans in China: not a negligible health risk due to the re-emergence of schistosomiasis. Environ Int 42:105–116. doi: 10.1016/j.envint.2011.04.014 CrossRefGoogle Scholar
  258. Zhu Y, Tian HJ, Shu WQ, Cao J, Zhuo JB (2003) Evaluation of the estrogenic activity of organic extracts from source water of Yangtze River and Jianling River in Chongqing section. Environmental pollution and control 25:65–57 (in Chinese)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tilman Floehr
    • 1
  • Hongxia Xiao
    • 1
  • Björn Scholz-Starke
    • 1
  • Lingling Wu
    • 2
  • Junli Hou
    • 3
  • Daqiang Yin
    • 2
  • Xiaowei Zhang
    • 4
  • Rong Ji
    • 4
  • Xingzhong Yuan
    • 5
  • Richard Ottermanns
    • 1
  • Martina Roß-Nickoll
    • 1
  • Andreas Schäffer
    • 1
    • 4
  • Henner Hollert
    • 1
    • 5
  1. 1.Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
  2. 2.Key Laboratory of Yangtze River Water Environment, Ministry of EducationTongji UniversityShanghaiPeople’s Republic of China
  3. 3.East China Sea Fisheries Research InstituteShanghaiPeople’s Republic of China
  4. 4.State Key Laboratory of Pollution Control and Research Reuse, School of the EnvironmentNanjing UniversityNanjingPeople’s Republic of China
  5. 5.College of Resources and Environmental ScienceChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations