Environmental Science and Pollution Research

, Volume 20, Issue 9, pp 6210–6221 | Cite as

Cadmium (Cd2+) removal by nano zerovalent iron: surface analysis, effects of solution chemistry and surface complexation modeling

  • Hardiljeet K. Boparai
  • Meera Joseph
  • Denis M. O’Carroll
Research Article

Abstract

Nano zerovalent iron (nZVI) is an effective remediant for removing various organic and inorganic pollutants from contaminated water sources. Batch experiments were conducted to characterize the nZVI surface and to investigate the effects of various solution properties such as pH, initial cadmium concentration, sorbent dosage, ionic strength, and competitive ions on cadmium removal by nZVI. Energy-dispersive X-ray and X-ray photoelectron spectroscopy results confirmed removal of Cd2+ ions by nZVI through adsorption. Cd2+ adsorption decreased in the presence of competitive cations in the order: Zn2+ > Co2+ > Mg2+ > Mn2+ = Cu2+ > Ca2+ > Na2+ = K+. Higher concentrations of Cl significantly decreased the adsorption. Cadmium removal increased with solution pH and reached a maximum at pH 8.0. The effects of various solution properties indicated Cd2+ adsorption on nZVI to be a chemisorption (inner-sphere complexation) process. The three surface complexation models (diffuse layer model, constant capacitance model, and triple layer model) fitted well to the adsorption edge experimental data indicating the formation of nZVI–Cd bidentate inner-sphere surface complexes. Our results suggest that nZVI can be effectively used for the removal of cadmium from contaminated water sources with varying chemical conditions.

Keywords

Cadmium Adsorption Nano zerovalent iron pH Competitive cations Ionic strength Surface complexation modeling 

Notes

Acknowledgments

This research was supported by the EJLB foundation, Natural Sciences and Engineering Research Council (NSERC) of Canada, and Canadian Foundation for Innovation Grant. We would like to thank Mark Biesinger, Qing Mu, and Ross Davison for the XPS and SEM/EDX analysis as well as Clare Robinson for her assistance with the speciation modelling.

References

  1. ATSDR (2008) ToxFAQs for cadmium. Agency for Toxic Substances and Disease Registry, Atlanta, GA. http://www.atsdr.cdc.gov/tfacts5.pdf. Accessed 30 Nov 2012
  2. ATSDR (2011) Detailed data table for the 2011 priority list of hazardous substances that will be the subject of toxicological profiles. Agency for Toxic Substances and Disease Registry, Atlanta, GA. http://www.atsdr.cdc.gov/SPL/resources/ATSDR_2011_SPL_Detailed_Data_ Table.pdf. Accessed 30 Nov 2012
  3. Balistrieri LS, Murray JW (1982) The adsorption of Cu, Pb, Zn, and Cd on goethite from major ion sea-water. Geochim Cosmochim Acta 46:1253–1265. doi: 10.1016/0016-7037(82)90010-2 CrossRefGoogle Scholar
  4. Benguella B, Benaissa H (2002) Effects of competing cations on cadmium biosorption by chitin. Colloid Surf A 201:143–150. doi: 10.1016/S0927- 7757(01)00899-8 CrossRefGoogle Scholar
  5. Benjamin MM, Leckie JO (1981) Competitive adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J Colloid Interf Sci 83:410–419. doi: 10.1016/0021-9797(81)90337-4 CrossRefGoogle Scholar
  6. Boekhold AE, Temminghoff EJM, Vanderzee SEATM (1993) Influence of electrolyte-composition and pH on cadmium sorption by an acid sandy soil. J Soil Sci 44:85–96. doi: 10.1111/j.1365-2389.1993.tb00436.x CrossRefGoogle Scholar
  7. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465. doi: 10.1016/j.jhazmat.2010.11.029 CrossRefGoogle Scholar
  8. Bose DN, Hedge MS, Basu S, Mandal KC (1989) XPS investigation of Cdte surfaces—effect of Ru modification. Semicond Sci Tech 4:866–870. doi: 10.1088/0268-1242/4/10/006 CrossRefGoogle Scholar
  9. Calareso C, Grasso V, Silipigni L (2001) The cadmium seleniophosphate (CdPSe3) XPS and XAES spectra. Appl Surf Sci 171:306–313. doi: 10.1016/S0169-4332(00)00818-7 CrossRefGoogle Scholar
  10. Celebi O, Uzum C, Shahwan T, Erten HN (2007) A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. J Hazard Mater 148:761–767. doi: 10.1016/j.jhazmat.2007.06.122 CrossRefGoogle Scholar
  11. Davis JA, James RO, Leckie JO (1978) Surface ionization and complexation at oxide/water interface. 1. Computation of electrical double-layer properties in simple electrolytes. J Colloid Interf Sci 63:480–499. doi: 10.1016/S0021-9797(78)80009-5 CrossRefGoogle Scholar
  12. Dermatas D, Meng X (2004) Removal of As, Cr and Cd by adsorptive filtration. Global Nest J 6:73–80Google Scholar
  13. Dinis ML, Fiuza A (2011) Exposure assessment to heavy metals in the environment: measures to eliminate or reduce the exposure to critical receptors. In: Simeonov LI, Kochubovski MH, Simeonova BG (eds) Environmental heavy metal pollution and effects on child mental development. Springer, Dordrecht, pp 27–50CrossRefGoogle Scholar
  14. Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. Wiley Inter Science, New YorkGoogle Scholar
  15. Efecan N (2008) Characterization of the adsorption behaviour of aqueous Cd(II) and Ni(II) ions on nanoparticles of zero-valent iron. M.S. Thesis. İzmir Institute of Technology, TurkeyGoogle Scholar
  16. Efecan N, Shahwan T, Eroglu AE, Lieberwirth I (2009) Characterization of the uptake of aqueous Ni2+ ions on nanoparticles of zero-valent iron (nZVI). Desalination 249:1048–1054. doi: 10.1016/j.desal.2009.06.054 CrossRefGoogle Scholar
  17. Fairley N (1999) CasaXPS Version 2.2.19. www.casaxps.com
  18. Good NE, Izawa S (1972) Hydrogen ion buffers. Method Enzymol 24:53–68. doi: 10.1016/0076-6879(72)24054-X CrossRefGoogle Scholar
  19. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004a) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574. doi: 10.1002/sia.1984 CrossRefGoogle Scholar
  20. Grosvenor AP, Kobe BA, McIntyre NS (2004b) Studies of the oxidation of iron by air after being exposed to water vapour using angle-resolved X-ray photoelectron spectroscopy and QUASES. Surf Interface Anal 36:1637–1641. doi: 10.1002/sia.1992 CrossRefGoogle Scholar
  21. Grosvenor AP, Kobe BA, McIntyre NS (2004c) Studies of the oxidation of iron by water vapour using X-ray photoelectron spectroscopy and QUASES (TM). Surf Sci 572:217–227. doi: 10.1016/j.susc.2004.08.035 CrossRefGoogle Scholar
  22. Gustafsson JP (2011) Visual MINTEQ version 3.0 [Online]. Department of Land and Water Resources Engineering, Royal Institute of Technology, Stockholm, Sweden. http://www.lwr.kth.se/English/OurSoftware/vminteq/. Accessed 22 Oct 2012
  23. Hanawa T, Hiromoto S, Yamamoto A, Kuroda D, Asami K (2002) XPS characterization of the surface oxide film 316 L stainless steel samples that were located in quasi-biological environments. Mater Trans 43:3088–3092CrossRefGoogle Scholar
  24. Hayes KF, Redden G, Ela W, Leckie JO (1991) Surface complexation models—an evaluation of model parameter-estimation using FITEQL and oxide mineral titration data. J Colloid Interf Sci 142:448–469. doi: 10.1016/0021-9797(91)90075-J CrossRefGoogle Scholar
  25. Huang QY, Chen WL, Xu LH (2005) Adsorption of copper and cadmium by Cu- and Cd-resistant bacteria and their composites with soil colloids and kaolinite. Geomicrobiol J 22:227–236. doi: 10.1080/01490450590947779 CrossRefGoogle Scholar
  26. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298. doi: 10.1021/Es048991u CrossRefGoogle Scholar
  27. Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050. doi: 10.1021/Es0520924 CrossRefGoogle Scholar
  28. Kumar PS, Ramakrishnan K, Kirupha SD, Sivanesan S (2010) Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk. Braz J Chem Eng 27:347–355. doi: 10.1590/S0104-66322010000200013 Google Scholar
  29. Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State 31:111–122. doi: 10.1080/10408430601057611 CrossRefGoogle Scholar
  30. Li XQ, Zhang WX (2006) Iron nanoparticles: the core–shell structure and unique properties for Ni(II) sequestration. Langmuir 22:4638–4642. doi: 10.1021/La060057k CrossRefGoogle Scholar
  31. Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles—a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946. doi: 10.1021/Jp0702189 CrossRefGoogle Scholar
  32. Lindsay WL (1979) Chemical equilibria in soils. Wiley, New YorkGoogle Scholar
  33. Manning BA, Kiser JR, Kwon H, Kanel SR (2007) Spectroscopic investigation of Cr(III)- and Cr(VI)-treated nanoscale zerovalent iron. Environ Sci Technol 41:586–592. doi: 10.1021/Es061721m CrossRefGoogle Scholar
  34. Mohapatra M, Mohapatra L, Singh P, Anand S, Mishra BK (2010) A comparative study on Pb(II), Cd(II), Cu(II), Co(II) adsorption from single and binary aqueous solutions on additive assisted nano-structured goethite. Int J Eng, Sci Technol 2(8):89–103. http://www.ajol.info/index.php/ijest/article/view/63784
  35. Mondal K, Jegadeesan G, Lalvani SB (2004) Removal of selenate by Fe and NiFe nanosized particles. Ind Eng Chem Res 43:4922–4934. doi: 10.1021/ie0307151 CrossRefGoogle Scholar
  36. Moreno-Castilla C, Alvarez-Merino MA, Lopez-Ramon MV, Rivera-Utrilla J (2004) Cadmium ion adsorption on different carbon adsorbents from aqueous solutions. Effect of surface chemistry, pore texture, ionic strength, and dissolved natural organic matter. Langmuir 20:8142–8148. doi: 10.1021/La049253m CrossRefGoogle Scholar
  37. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2012) Nanoscale zerovalent iron and bimetallic particles for contaminated site remediation. Adv Water Resour In Press. doi: 10.1016/j.advwatres.2012.02.005 Google Scholar
  38. Petersen EJ, Pinto RA, Shi X, Huang Q (2012) Impact of size and sorption on degradation of trichloroethylene and polychlorinated biphenyls by nano-scale zerovalent iron. J Hazard Mater 243:73–79. doi: 10.1016/j.jhazmat.2012.09.070 CrossRefGoogle Scholar
  39. Rao KS, Anand S, Venkateswarlu P (2011) Adsorption of cadmium from aqueous solution by Ficus religiosa leaf powder and characterization of loaded biosorbent. Clean-Soil Air Water 39:384–391. doi: 10.1002/clen.201000098 CrossRefGoogle Scholar
  40. Sakulchaicharoen N, O’Carroll DM, Herrera JE (2010) Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. J Contam Hydrol 118:117–127. doi: 10.1016/j.jconhyd.2010.09.004 CrossRefGoogle Scholar
  41. Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, Boparai H (2008) Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water Air Soil Poll 192:349–359. doi: 10.1007/s11270-008-9661-8 CrossRefGoogle Scholar
  42. Schaller MS, Koretsky CM, Lund TJ, Landry CJ (2009) Surface complexation modeling of Cd(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite. J Colloid Interf Sci 339:302–309. doi: 10.1016/j.jcis.2009.07.053 CrossRefGoogle Scholar
  43. Soltani RDC, Jafari AJ, Khorramabadi GS (2009) Investigation of cadmium (II) ions biosorption onto pretreated dried activated sludge. Am J Environ Sci 5:41–46. doi: 10.3844/ajes.2009.41.46 Google Scholar
  44. Song H, Carraway ER (2005) Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Technol 39:6237–6245. doi: 10.1021/Es048262e CrossRefGoogle Scholar
  45. Tiller KG, Nayyar VK, Clayton PM (1979) Specific and nonspecific sorption of cadmium by soil clays as influenced by zinc and calcium. Aust J Soil Res 17:17–28. doi: 10.1071/SR9790017 CrossRefGoogle Scholar
  46. Üzüm Ç, Shahwan T, Eroğlu AE, Lieberwirth I, Scott TB, Hallam KR (2008) Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chem Eng J 144:213–220. doi: 10.1016/j.cej.2008.01.024 CrossRefGoogle Scholar
  47. Unuabonah EI, Adebowale KO, Olu-Owolabi BI, Yang LZ, Kong LX (2008) Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy 93:1–9. doi: 10.1016/j.hydromet.2008.02.009 CrossRefGoogle Scholar
  48. Utomo HD, Hunter KA (2006) Adsorption of divalent copper, zinc, cadmium and lead ions from aqueous solution by waste tea and coffee adsorbents. Environ Technol 27:25–32. doi: 10.1080/09593332708618619 CrossRefGoogle Scholar
  49. Xi YF, Mallavarapu M, Naidu R (2010) Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron—an SEM, TEM and XPS study. Mater Res Bull 45:1361–1367. doi: 10.1016/j.materresbull.2010.06.046 CrossRefGoogle Scholar
  50. Yan S, Hua B, Bao Z, Yang J, Liu C, Deng B (2010) Uranium(VI) removal by nanoscale zerovalent iron in anoxic batch systems. Environ Sci Technol 44:7783–7789. doi: 10.1021/es9036308 CrossRefGoogle Scholar
  51. Zabarskas V, Tamulevicius S, Prosycevas I, Puiso J (2004) Analysis of Fe3O4 protective coatings thermally grown on color picture TV tube structural steel components. Mater Sci-Medzg 10(2):147–151. http://internet.ktu.lt/lt/mokslas/zurnalai/medz/pdf/medz0-77/05%20Zabarsko%20str%20147-151.pdf
  52. Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188. doi: 10.1016/S0041-008x(02)00021-2 CrossRefGoogle Scholar
  53. Zasoski RJ, Burau RG (1988) Sorption and sorptive interaction of cadmium and zinc on hydrous manganese oxide. Soil Sci Soc Am J 52:81–87CrossRefGoogle Scholar
  54. Zhang L, Manthiram A (1997) Chains composed of nanosize metal particles and identifying the factors driving their formation. Appl Phys Lett 70:2469–2471CrossRefGoogle Scholar
  55. Zhang W-x (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332. doi: 10.1023/A:1025520116015 CrossRefGoogle Scholar
  56. Zhu NR, Luan HW, Yuan SH, Chen J, Wu XH, Wang LL (2010) Effective dechlorination of HCB by nanoscale Cu/Fe particles. J Hazard Mater 176:1101–1105. doi: 10.1016/j.jhazmat.2009.11.092 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hardiljeet K. Boparai
    • 1
  • Meera Joseph
    • 1
  • Denis M. O’Carroll
    • 1
  1. 1.Department of Civil and Environmental Engineering, Faculty of EngineeringThe University of Western OntarioLondonCanada

Personalised recommendations