Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Response of the lichen Cladonia rei Schaer. to strong heavy metal contamination of the substrate

  • 234 Accesses

  • 22 Citations

Abstract

The phenomenon of mass occurrence of the lichen Cladonia rei in extremely contaminated post-smelting slag dumps was studied in relation to metal accumulation capacity of this lichen. The research was aimed to evaluate the relationships between element contents in the thalli and in the corresponding substrate. The study was conducted in terms of a wide spectrum of Zn, Cd, Pb and As contents. The concentrations of these elements in the lichen thalli and substrate samples were measured. Various regression models were considered to find the best fitted one that greatly reflects the dependencies. Various Cladonia species and the hyperaccumulator Diploschistes muscorum were also included in the study for comparison purposes. Specific non-linear regression models described by a power function reflected relationships between Zn and Cd contents in C. rei thalli and in the host substrate in the most reliable way. The relationship for As was also noted, but none significant model was found. Contrarily, Pb concentrations in the thalli varied independently of the metal levels in the substrate. Nevertheless, the concentrations of all measured heavy metals in C. rei thalli are relatively low considering the frequently enormous substrate contamination. Different Cladonia species demonstrated a generally similar accumulation capacity and could be considered as weak accumulators. The restrained accumulation pattern may be one of the important attributes of C. rei which facilitates its colonisation of extremely contaminated dumps. This finding highlights ecological importance of this species as stable and resistant pioneer in such affected sites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aznar JC, Richer-LaflèChe M, Cluis D (2008) Metal contamination in the lichen Alectoria sarmentosa near the copper smelter of Murdochville, Québec. Environ Pollut 156:76–81. doi:10.1016/j.envpol.2007.12.037

  2. Bačkor M, Fahselt D (2004) Physiological attributes of the lichen Cladonia pleurota in heavy metal-rich and control sites near Sudbury (Ontario, Canada). Environ Exp Bot 52:149–159. doi:10.1016/j.envexpbot.2004.01.014

  3. Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plantarum 53:214–222. doi:10.1007/s10535-009-0042-y

  4. Bačkor M, Peksa O, Škaloud P, Bačkorová M (2010) Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotox Environ Safe 73:603–612. doi:10.1016/j.ecoenv.2009.11.002

  5. Bajpai R, Upreti DK, Dwivedi SK (2009) Arsenic accumulation in lichens of Mandav monuments, Dhar District, Madhya Pradesh, India. Environ Monit Assess 159:437–442. doi:10.1007/s10661-008-0641-7

  6. Banásová V, Horak O, Čiamporová M, Nadubinská M, Lichtscheidl I (2006) The vegetation of metalliferous and non-metalliferous grasslands in two former mine regions in Central Slovakia. Biologia 61:433–439. doi:10.2478/s11756-006-0073-1

  7. Bargagli R, Monaci F, Borghini F, Bravi F, Agnorelli C (2002) Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy. Environ Pollut 116:279–287. doi:10.1016/S0269-7491(01)00125-7

  8. Basile A, Sorbo S, Aprile G, Conte B, Castaldo Cobianchi R (2008) Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Environ Pollut 151:401–407. doi:10.1016/j.envpol.2007.07.004

  9. Bergamaschi L, Rizzio E, Giaveri G, Loppi S, Gallorini M (2007) Comparison between the accumulation capacity of four lichen species transplanted to a urban site. Environ Pollut 148:468–476. doi:10.1016/j.envpol.2006.12.003

  10. Brown DH, Beckett RP (1984) Uptake and effect of cations on lichen metabolism. Lichenologist 16:173–188

  11. Chettri MK, Cook CM, Vardaka E, Sawidis T, Lanaras T (1998) The effect of Cu, Zn and Pb on the chlorophyll content of the lichens Cladonia convoluta and Cladonia rangiformis. Environ Exp Bot 39:1–10. doi:10.1016/S0098-8472(97)00024-5

  12. Chisholm JE, Jones CG, Purvis OW (1987) Hydrated copper oxalate, moolooite, in lichens. Mineral Mag 51:715–18. doi:10.1180/minmag.1987.051.363.12

  13. CITEC (2003) Environmental program including waste management plan for the city Piekary Śląskie—phase I. CITEC S.A, Katowice (in Polish)

  14. Coppins BJ, van den Boom PPG (1995) Micarea confusa a new species from zinc- and cadmium-contaminated soils in Belgium and The Netherlands. Lichenologist 27:81–90. doi:10.1006/lich.1995.0007

  15. Cuny D, Denayer FO, de Foucault B, Schumacker R, Colein P, van Haluwyn C (2004a) Patterns of metal soil contamination and changes in terrestrial cryptogamic communities. Environ Pollut 129:289–297. doi:10.1016/j.envpol.2003.10.009

  16. Cuny D, Van Haluwyn C, Shirali P, Zerimech F, Jerome L, Haguenoer JM (2004b) Cellular impact of metal trace elements in terricolous lichen Diploschistes muscorum (Scop.) R. Sant.—identification of oxidative stress biomarker. Water Air Soil Poll 152:55–69. doi:10.1023/B:WATE.0000015332.94219.ff

  17. De Bruin M, Hackenitz E (1986) Trace element concentrations in epiphytic lichens and bark substrate. Environ Pollut 11:153–160. doi:10.1016/0143-148X(86)90041-8

  18. Dolnik C, Beck A, Zarabaska D (2010) Distinction of Cladonia rei and C. subulata based on molecular, chemical and morphological characteristics. Lichenologist 42:373–386. doi:10.1017/S0024282910000071

  19. Gardner SC, Fitzgerald SL, Vargas BA, Rodriguez LM (2006) Heavy metal accumulation in four species of sea turtles from the Baja California peninsula, Mexico. Biometals 19:91–99. doi:10.1007/s10534-005-8660-0

  20. Gilbert O (2000) Lichens. New Naturalist Library. Harper Collins, London

  21. Goyal R, Seaward MRD (1982) Metal uptake in terricolous lichens. II. Effects on the morphology of Peltigera canina and Peltigera rufescens. New Phytol 90:73–84

  22. Guttová A, Lackovičová A, Pišút I, Pišút P (2011) Decrease in air pollution load in urban environment of Bratislava (Slovakia) inferred from accumulation of metal elements in lichens. Environ Monit Assess 182:361–373. doi:10.1007/s10661-011-1881-5

  23. Hajdúk J, Lisická E (1999) Cladonia rei (lichenized Ascomycota) at sites contaminated by emissions from Kovohút Krompachy (NE Slovakia). Bulletin Slovenskej Botanickej Spoločnosti, Bratislava 21:49–51 (in Slovak)

  24. James PW (2009) Cladonia P. Browne (1756). In: Smith CW, Aptroot A, Coppins BJ, Fletcher A, Gilbert OL, James PW, Wolseley PA (eds) The lichens of Great Britain and Ireland. The British Lichen Society, London, pp 309–338

  25. Kabata-Pendias A, Pendias H (2001) Trace element in soils and plants, 3rd edn. CRC, Boca Raton

  26. Loppi S, Pirintsos SA, Dominicis V (1999) Soil contribution to the elemental composition of epiphytic lichens (Tuscany, central Italy). Environ Monit Assess 58:121–131. doi:10.1023/A:1006047431210

  27. Maciak F (1996) Protection and restoration of the environment. Szkoła Główna Gospodarstwa Wiejskiego, Warszawa

  28. Meerts P, Van Isacker N (1997) Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecol 133:221–231

  29. Motulsky H, Christopoulos A (2004) Fitting models to biological data using linear and nonlinear regression. Oxford University Press, New York

  30. Naeth MA, Wilkinson SR (2008) Lichens as biomonitors of air quality around a diamond nine, Northwest Territories, Canada. J Environ Qual 37:1675–1684. doi:10.2134/jeq2007.0090

  31. Nash TH III (2008) Lichen biology. Cambridge University Press, Cambridge

  32. Olmez I, Gulovali MC, Gordon GE (1985) Trace element concentrations in lichens near a coal-fired power plant. Atmos Environ 19:1663–1669

  33. Olowoyo JO, van Heerden E, Fischer JL (2011) Trace element concentrations from lichen transplants in Pretoria, South Africa. Environ Sci Pollut R 18:663–668. doi:10.1007/s11356-010-0410-3

  34. Orange A, James PW, White FJ (2001) Microchemical methods for the identification of lichens. British Lichen Society, London

  35. Osyczka P, Dutkiewicz EM, Olech M (2007) Trace element concentrations in moss Sanionia uncinata (Hedw.) Loeske and lichens—Usnea antarctica Du Rietz and Usnea aurantiaco-atra (Jacq.) Bory collected within Antarctic research stations. Pol J Ecol 55:39–48

  36. Osyczka P, Skubała K (2011) Chemical races of Cladonia cariosa and C. symphycarpa (lichenized Ascomycota)—a Polish case study in a worldwide context. Nova Hedwigia 93:363–373. doi:10.1127/0029-5035/2011/0093-0363

  37. Pakarinen P, Mäkinen A, Rinne RJK (1978) Heavy metals in Cladonia arbuscula and Cladonia mitis in eastern Fennoscandia. Ann Bot Fenn 15:281–286

  38. Paus SM (1997) Die Erdflechtenvegetation nordwestdeutschlands und einiger Randgebiete. Bibl Lichenol 66:1–222

  39. Pawlik-Skowrońska B, Bačkor M (2011) Zn/Pb-tolerant lichens with higher content of secondary metabolites produce less phytochelatins than specimens living in unpolluted habitats. Environ Exp Bot 72:64–70. doi:10.1016/j.envexpbot.2010.07.002

  40. Pawlik-Skowrońska B, Wójciak H, Skowroński T (2008) Heavy metal accumulation, resistance and physiological status epigeic and epiphytic lichens inhabiting Zn and Pb polluted areas. Pol J Ecol 56:195–207

  41. Pawlik-Skowrońska B, Purvis WO, Pirszel J, Skowroński T (2006) Cellular mechanisms of Cu-tolerance in the epilithic lichen Lecanora polytropa growing at a copper mine. Lichenologist 38:267–275. doi:10.1017/S0024282906005330

  42. Purvis OW, Halls C (1996) A review of lichens in metal-enriched environments. Lichenologist 28:571–601. doi:10.1017/S0024282996000758

  43. Puziewicz J, Zainoun K, Bril H (2007) Primary phases in pyrometallurgical slags from a zinc-smelting waste dump, Świętochłowice, Upper Silesia, Poland. Can Mineral 45:1189–1200. doi:10.2113/gscanmin.45.5.1189

  44. Rajakaruna N, Harris TB, Clayden S, Dibble A, Olday FS (2011) Lichens of Callahan Mine, a copper and zinc-enriched Superfund site in Brooksville, Maine, U.S.A. Rhodora 113:1–31. doi:10.3119/10-03.1

  45. Saad L, Parmentier I, Colinet G et al (2012) Investigating the vegetation–soil relationships on the copper–cobalt rock outcrops of Katanga (D.R. Congo), an essential step in a biodiversity conservation plan. Restor Ecol 20:405–415

  46. Salemaa M, Derome J, Helmisaari HS, Nieminen T, Vanha-Majamaa I (2004) Element accumulation in boreal bryophytes, lichens, and vascular plants exposed to heavy metal and sulfur deposition in Finland. Sci Total Environ 324:141–160. doi:10.1016/j.scitotenv.2003.10.025

  47. Sarret G, Manceau A, Cuny D, Van Halowyn C, Deruelle S, Scerbo R et al (1998) Mechanisms of lichen resistance to metalic pollution. Envir Sci Tech Lib 32:3325–3330

  48. Sawidis T, Chettri MK, Zachariadis GA, Stratis JA, Seaward MRD (1995) Heavy metal bioaccumulation in lichens from Macedonia in northern Greece. Toxicol Environ Chem 50:157–166. doi:10.1080/02772249509358211

  49. Sen A, Srivastava M (1990) Regression analysis, theory, methods and applications. Springer, New York

  50. Skubała K (2011) Vascular flora of sites contaminated with heavy metals on the example of two post-industrial spoil heaps connected with manufacturing of zinc and lead products in Upper Silesia. Arch Environ Prot 37:55–74

  51. Stat-Soft Inc (2011) STATISTICA (data analysis software system), version 10. www.statsoft.com. Accessed 15 December 2012

  52. Syrek M, Kukwa M (2008) Taxonomy of the lichen Cladonia rei and its status in Poland. Biologia 63:493–497. doi:10.2478/s11756-008-0092-1

  53. Tyler G (1989) Uptake, retention, and toxicity of heavy metals in lichens. Water Air Soil Poll 47:321–333. doi:10.1007/BF00279330

  54. Vantová I, Bačkor M, Klejdus B, Bačkorová M, Kováčik J (2012) Copper uptake and copper-induced physiological changes in the epiphytic lichen Evernia prunastri. Plant Growth Regul. doi:10.1007/s10725-012-9741-z

  55. World Bank Group (1999) Pollution Prevention and Abatement Handbook 1998: Toward Cleaner Production. The International Bank for Reconstruction and Development/The World Bank, Washington

  56. Zaprjanova P, Dospatliev L, Angelova V, Ivanov K (2010) Correlation between soil characteristics and lead and cadmium content in the aboveground biomass of Virginia tobacco. Environ Monit Assess 163:253–261. doi:10.1007/s10661-009-0831-y

Download references

Acknowledgments

We are very grateful to Magdalena Podgajny (Agricultural University, Kraków, Poland) and Alina Kafel (University of Silesia, Katowice, Poland) for their organisational support in carrying out the chemical analyses of the substrate matter and lichen samples. The project was financially supported by the National Science Centre (Decision No. DEC-2012/05/N/NZ8/00842).

Author information

Correspondence to Piotr Osyczka.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Osyczka, P., Rola, K. Response of the lichen Cladonia rei Schaer. to strong heavy metal contamination of the substrate. Environ Sci Pollut Res 20, 5076–5084 (2013). https://doi.org/10.1007/s11356-013-1645-6

Download citation

Keywords

  • Lichens
  • Accumulation capacity
  • Heavy metals
  • Post-smelting wastes
  • Slag substrate
  • Regression models