Environmental Science and Pollution Research

, Volume 20, Issue 11, pp 8013–8020 | Cite as

PFAS profiles in three North Sea top predators: metabolic differences among species?

  • Anders GalatiusEmail author
  • Rossana Bossi
  • Christian Sonne
  • Frank Farsø Rigét
  • Carl Christian Kinze
  • Christina Lockyer
  • Jonas Teilmann
  • Rune Dietz
Nordic Research on Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs)


Profiles of seven compounds of perfluoro-alkyl substances (PFASs) were compared among three species of top predators from the Danish North Sea: the white-beaked dolphin (Lagenorhynchus albirostris), the harbor porpoise (Phocoena phocoena), and the harbor seal (Phoca vitulina). The seals had higher total burdens (757.8 ng g−1 ww) than the dolphins (439.9 ng g−1 ww) and the porpoises (355.8 ng g−1 ww), probably a reflection of feeding closer to the shore and thus contamination sources. The most striking difference among the species was the relative contribution of perfluorooctanesulfonamide (PFOSA) to the profiles; the seals (0.1 %) had much lower levels than porpoises (8.3 %) and dolphins (26.0 %). In combination with the values obtained from the literature, this result indicates that Carnivora species including Pinnipedia have a much higher capacity of transforming PFOSA to perfluorooctane sulfonic acid (PFOS) than cetacean species. Another notable difference among the species was that the two smaller species (seals and porpoises) with supposedly higher metabolic rates had lower concentrations of the perfluorinated carboxylic acids, which are generally more easily excreted than perfluorinated sulfonamides. Species-specific characteristics should be recognized when PFAS contamination in marine mammals is investigated, for example, several previous studies of PFASs in cetaceans have not quantified PFOSA.


Harbor porpoise Harbor seal Metabolism North Sea Perfluorinated alkylated substances White-beaked dolphin 



The Natural History Museum, University of Copenhagen, DTU-Aqua, Danish Forest and Nature Agency, Department of Bioscience, Aarhus University Roskilde, and The Fisheries and Maritime Museum, Esbjerg funded the harbor porpoise and white-beaked dolphin sampling and storage. Svend Tougaard and Thyge Jensen (formerly the Fisheries and Maritime Museum, Esbjerg) helped in collecting the seals. Center for Game Health and Dept. of Environmental Science, Aarhus University provided funding for the analyses. Inga Jensen skillfully conducted the PFC analyses at the Department of Environmental Science laboratory, Aarhus University.


  1. Aarefjord H, Bjørge AJ, Kinze CC, Lindstedt I (1995) Diet of the harbour porpoise (Phocoena phocoena) in Scandinavian waters. Reports of the International Whaling Commission Special Issue 15:211–222Google Scholar
  2. Ahrens L, Siebert U, Ebinghaus R (2009) Temporal trends of polyfluoroalkyl compounds in harbor seals (Phoca vitulina) from the German Bight, 1999-2008. Chemosphere 76:151–158CrossRefGoogle Scholar
  3. Berthiaume J, Wallace KB (2002) Perfluorooctanoate, perfluorooctanesulfonate, and N-ethyl perfluorooctanesulfonamido ethanol; peroxisome proliferation and mitochondrial biogenesis. Toxicol Lett 129:23–32Google Scholar
  4. Bossi R, Riget FF, Dietz R, Sonne C, Fauser P, Dam M, Vorkamp K (2005a) Preliminary screening of perfluorooctane sulfonate (PFOS) and other fluorochemicals in fish, birds and marine mammals from Greenland and the Faroe Islands. Environ Pollut 136:323–329CrossRefGoogle Scholar
  5. Bossi R, Riget FF, Dietz R (2005b) Temporal and spatial trends of perfluorinated compounds in ringed seal (Phoca hispida) from Greenland. Environ Sci Technol 39:7416–7422CrossRefGoogle Scholar
  6. Butt CM, Muir DCG, Stirling I, Kwan M, Mabury SA (2007) Rapid response of arctic ringed seals to changes in perfluoroalkyl production. Environ Sci Technol 41:42–49CrossRefGoogle Scholar
  7. Butt CM, Mabury SA, Kwan M, Wang XW, Muir DCG (2008) Spatial trends of perfluoroalkyl compounds in ringed seals (Phoca hispida) from the Canadian Arctic. Environ Toxicol Chem 27:542–553CrossRefGoogle Scholar
  8. Butt CM, Berger U, Bossi R, Tomy GT (2010) Levels and trends of poly- and perfluorinated compounds in the arctic environment. Sci Total Environ 408:2936–2965CrossRefGoogle Scholar
  9. Clarkson PL, Stirling I (1994) Polar bears. In: Hygnstrom SE, Timm RM, Larson GE (eds) Prevention and control of wildlife damage. University of Nebraska, Lincoln, pp C-25–C-34Google Scholar
  10. Dietz R, Heide-Jørgensen MP, Teilmann J, Valentin N, Härkönen T (1991) Age determination in European harbour seals Phoca vitulina L. Sarsia 76:17–21Google Scholar
  11. Dietz R, Bossi R, Riget FF, Sonne C, Born EW (2008) Increasing perfluoroalkyl contaminants in east Greenland polar bears (Ursus maritimus): a new toxic threat to the Arctic bears. Environ Sci Technol 42:2701–2707CrossRefGoogle Scholar
  12. Dietz R, Riget FF, Galatius A, Sonne C, Teilmann J, Bossi R (2012) Spatial trends of perfluorochemicals in harbor seals (Phoca vitulina) from Danish waters. Sci Total Environ 414:732–737CrossRefGoogle Scholar
  13. Dorneles PR, Lailson-Brito J, Azevedo AF, Meyer J, Vidal LG, Fragoso AB, Torres JP, Malm O, Blust R, Das K (2008) High accumulation of perfluorooctane sulfonate (PFOS) in marine tucuxi dolphins (Sotalia guianensis) from the Brazilian coast. Environ Sci Technol 42:5368–5373CrossRefGoogle Scholar
  14. Galatius A, Dietz R, Riget FF, Sonne C, Kinze CC, Lockyer C, Bossi R (2011) Temporal and life history related trends of perfluorochemicals in harbor porpoises from the Danish North Sea. Mar Pollut Bull 62:1476–1483CrossRefGoogle Scholar
  15. Galatius A, Jansen OE, Kinze CC (2013) Parameters of growth and reproduction of white-beaked dolphins from the North Sea. Mar Mamm Sci. doi: 10.1111/j.1748-7692.2012.00568.x Google Scholar
  16. Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35:1339–1342CrossRefGoogle Scholar
  17. Grandjean P, Andersen EW, Budtz-Jorgensen E, Nielsen F, Molbak K, Weihe P, Heilmann C (2012) Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA 307:391–397CrossRefGoogle Scholar
  18. Greaves AK, Letcher RJ, Sonne C, Dietz R, Born EW (2012) Perfluoroalkyl carboxylate and sulfonate concentrations and patterns are highly contrasting in tissues and blood of East Greenland polar bears. Environ Sci Technol 46:11575–11583Google Scholar
  19. Hailer F, Kutschera VE, Hallstrom BM, Klassert D, Fain SR, Leonard JA, Arnason U, Janke A (2012) Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage. Science 336:344–347CrossRefGoogle Scholar
  20. Hall AJ, Watkins J, Hammond PS (1998) Seasonal variation in the diet of harbour seals in the south-western North Sea. Mar Ecol Prog Ser 170:269–281CrossRefGoogle Scholar
  21. Härkönen T, Dietz R, Reijnders P, Teilmann J, Harding K, Hall A, Brasseur S, Siebert U, Goodman SJ, Jepson PD, Rasmussen TD, Thompson P (2006) The 1988 and 2002 phocine distemper virus epidemics in European harbour seals. Dis Aquat Org 68:115–130CrossRefGoogle Scholar
  22. Hart K, Kannan K, Isobe T, Takahashi S, Yamada TK, Miyazaki N, Tanabe S (2008) Time trends and transplacental transfer of perfluorinated compounds in melon-headed whales stranded along the Japanese coast in 1982, 2001/2002, and 2006. Environ Sci Technol 42:7132–7137CrossRefGoogle Scholar
  23. Hart K, Gill VA, Kannan K (2009) Temporal trends (1992-2007) of perfluorinated chemicals in Northern Sea otters (Enhydra lutris kenyoni) from South-Central Alaska. Arch Environ Contam Toxicol 56:607–614CrossRefGoogle Scholar
  24. Herr H, Scheidat M, Lehnert K, Siebert U (2009) Seals at sea: modelling seal distribution in the German bight based on aerial survey data. Mar Biol 156:811–820CrossRefGoogle Scholar
  25. Hohn AA, Lockyer C (1995) Protocol for obtaining age estimates from harbour porpoise teeth. Reports of the International Whaling Commision, Special Issue 16:494–496Google Scholar
  26. Houde M, Martin JW, Letcher RJ, Solomon KR, Muir DCG (2006) Biological monitoring of polyfluoroalkyl substances: a review. Environ Sci Technol 40:3463–3473CrossRefGoogle Scholar
  27. Jansen OE, Leopold MF, Meesters EHWG, Smeenk C (2010) Are white-beaked dolphins Lagenorhynchus albirostris food specialists? Their diet in the southern North Sea. J Mar Biol Assoc U K 90:1501–1508CrossRefGoogle Scholar
  28. Johansson N, Fredriksson A, Eriksson P (2008) Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology 29:160–169CrossRefGoogle Scholar
  29. Jones PD, Hu WY, De Coen W, Newsted JL, Giesy JP (2003) Binding of perfluorinated fatty acids to serum proteins. Environ Toxicol Chem 22:2639–2649CrossRefGoogle Scholar
  30. Kannan K, Koistinen J, Beckmen K, Evans T, Gorzelany JF, Hansen KJ, Jones PD, Helle E, Nyman M, Giesy JP (2001) Accumulation of perfluorooctane sulfonate in marine mammals. Environ Sci Technol 35:1593–1598CrossRefGoogle Scholar
  31. Kannan K, Corsolini S, Falandysz J, Oehme G, Focardi S, Giesy JP (2002) Perfluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals, fishes, and birds from coasts of the Baltic and the Mediterranean Seas. Environ Sci Technol 36:3210–3216CrossRefGoogle Scholar
  32. Kannan K, Tao L, Sinclair E, Pastva SD, Jude DJ, Giesy JP (2005) Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Arch Environ Contam Toxicol 48:559–566CrossRefGoogle Scholar
  33. Kinze CC, Jensen T, Tougaard S, Baagøe HJ (2011) Records of cetacean strandings on the Danish coastline during 1998-2007. Flora og Fauna 116:91–99Google Scholar
  34. Kissa E (2001) Fluorinated surfactants and repellents. Marcel Dekker, New YorkGoogle Scholar
  35. Koopman HN (1998) Topographical distribution of the blubber of harbor porpoises (Phocoena phocoena). J Mammal 79:260–270CrossRefGoogle Scholar
  36. Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, Butenhoff JL, Stevenson LA (2003) Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: Postnatal evaluation. Toxicol Sci 74:382–392CrossRefGoogle Scholar
  37. Law RJ, Bersuder P, Mead LK, Jepson PD (2008) PFOS and PFOA in the livers of harbour porpoises (Phocoena phocoena) stranded or bycaught around the UK. Mar Pollut Bull 56:792–797CrossRefGoogle Scholar
  38. Leonel J, Kannan K, Tao L, Fillmann G, Montone RC (2008) A baseline study of perfluorochemicals in franciscana dolphin and subantarctic fur seal from coastal waters of Southern Brazil. Mar Pollut Bull 56:778–781CrossRefGoogle Scholar
  39. Liao C, Wang T, Cui L, Zhou Q, Duan S, Jiang G (2009) Changes in synaptic transmission, calcium current, and neurite growth by perfluorinated compounds are dependent on the chain length and functional group. Environ Sci Technol 43:2099–2104CrossRefGoogle Scholar
  40. Lim TC, Wang B, Huang J, Deng S, Yu G (2011) Emission inventory for PFOS in China: review of past methodologies and suggestions. Sci World J 11:1963–1980CrossRefGoogle Scholar
  41. Liu XH, Liu W, Jin YH, Yu WG, Wang FQ, Liu L (2010) Effect of gestational and lactational exposure to perfluorooctanesulfonate on calcium-dependent signaling molecules gene expression in rats’ hippocampus. Arch Toxicol 84:71–79CrossRefGoogle Scholar
  42. Lockyer C, Mackey B, Read F, Härkönen T, Hasselmeier I (2010) Age determination methods in harbour seals with a review of methods applicable to carnivores. NAMMCO Sci Publ 8:245–264Google Scholar
  43. Luebker DJ, York RG, Hansen KJ, Moore JA, Butenhoff JL (2005) Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and biochemical and pharmacokinetic parameters. Toxicology 215:149–169CrossRefGoogle Scholar
  44. Malinverno G, Colombo I, Visca M (2005) Toxicological profile of hydrofluoropolyethers. Regul Toxicol Pharmacol 41:228–239CrossRefGoogle Scholar
  45. Martin JW, Smithwick MM, Braune BM, Hoekstra PF, Muir DCG, Mabury SA (2004) Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environ Sci Technol 38:373–380CrossRefGoogle Scholar
  46. Miller ML, Clark LC Jr, Wesseler EP, Stanley L, Emory C, Kaplan S (1975) Light microscopic morphometry and fine structure of the liver: a response to perfluorinated liquid emulsions used as artificial blood. Ala J Med Sci 12:84–113Google Scholar
  47. Moon HB, Kannan K, Yun S, An YR, Choi SG, Park JY, Kim ZG, Moon DY, Choi HG (2010) Perfluorinated compounds in minke whales (Balaenoptera acutorostrata) and long-beaked common dolphins (Delphinus capensis) from Korean coastal waters. Mar Pollut Bull 60:1130–1135CrossRefGoogle Scholar
  48. Morrison P, Rosenmann M, Estes JA (1974) Metabolism and thermoregulation in sea otter. Physiol Zool 47:218–229Google Scholar
  49. Muir D, Alaee M, Butt C, Braune B, Helm P, Mabury S (2004) New contaminants in Arctic biota. Synopsis of research conducted under the 2003-2004 Northern Contaminants Program. Indian and Northern Affairs Canada, Ottawa, pp 139–148Google Scholar
  50. Nakata H, Kannan K, Nasu T, Cho HS, Sinclair E, Takemura A (2006) Perfluorinated contaminants in sediments and aquatic organisms collected from shallow water and tidal flat areas of the Ariake Sea, Japan: environmental fate of perfluorooctane sulfonate in aquatic ecosystems. Environ Sci Technol 40:4916–4921CrossRefGoogle Scholar
  51. Quinete N, Wu Q, Zhang T, Yun SH, Moreira I, Kannan K (2009) Specific profiles of perfluorinated compounds in surface and drinking waters and accumulation in mussels, fish, and dolphins from southeastern Brazil. Chemosphere 77:863–869CrossRefGoogle Scholar
  52. R Development Core Team (2008) An introduction to R: notes on R, a programming environment for data analysis and graphics. Network Theory Ltd, UKGoogle Scholar
  53. Ramsay MA, Stirling I (1988) Reproductive-biology and ecology of female polar bears (Ursus maritimus). J Zool 214:601–634CrossRefGoogle Scholar
  54. Read AJ, Hohn AA (1995) Life in the fast lane: the life history of harbor porpoises from the Gulf of Maine. Mar Mamm Sci 11:423–440CrossRefGoogle Scholar
  55. Reiner JL, O’Connell SG, Moors AJ, Kucklick JR, Becker PR, Keller JM (2011) Spatial and temporal trends of perfluorinated compounds in beluga whales (Delphinapterus leucas) from Alaska. Environ Sci Technol 45:8129–8136CrossRefGoogle Scholar
  56. Ross MS, Wong CS, Martin JW (2012) Isomer-specific biotransformation of perfluorooctane sulfonamide in Sprague-Dawley rats. Environ Sci Technol 46:3196–3203CrossRefGoogle Scholar
  57. Shaw S, Berger ML, Brenner D, Tao L, Wu Q, Kannan K (2009) Specific accumulation of perfluorochemicals in harbor seals (Phoca vitulina concolor) from the northwest Atlantic. Chemosphere 74:1037–1043CrossRefGoogle Scholar
  58. Slotkin TA, MacKillop EA, Melnick RL, Thayer KA, Seidler FJ (2008) Developmental neurotoxicity of perfluorinated chemicals modeled in vitro. Environ Heal Perspect 116:716–722CrossRefGoogle Scholar
  59. Smithwick M, Muir DCG, Mabury SA, Solomon KR, Martin JW, Sonne C, Born EW, Letcher RJ, Dietz R (2005) Perfluoroalkyl contaminants in liver tissue from East Greenland polar bears (Ursus maritimus). Environ Toxicol Chem 24:981–986Google Scholar
  60. Thewissen JGM, Williams EM (2002) The early radiations of Cetacea (Mammalia): evolutionary pattern and developmental correlations. Annu Rev Ecol Syst 33:73–90CrossRefGoogle Scholar
  61. Tomy GT, Budakowski W, Halldorson T, Helm PA, Stern GA, Friesen K, Pepper K, Tittlemier SA, Fisk AT (2004a) Fluorinated organic compounds in an eastern Arctic marine food web. Environ Sci Technol 38:6475–6481CrossRefGoogle Scholar
  62. Tomy GT, Tittlemier SA, Palace VP, Budakowski WR, Braekevelt E, Brinkworth L, Friesen K (2004b) Biotransformation of N-ethyl perfluorooctanesulfonamide by rainbow trout (Onchorhynchus mykiss) liver microsomes. Environ Sci Technol 38:758–762CrossRefGoogle Scholar
  63. Tougaard J, Tougaard S, Jensen RC, Jensen T, Adelung D, Liebsch N, Müller G (2006) Harbour seals on Horns Reef before, during and after construction of Horns Rev Offshore Wind Farm. Final report to Vattenfall A/S. Biological Papers from the Fisheries and Maritime Museum no. 5, EsbjergGoogle Scholar
  64. Van de Vijver KI, Hoff P, Das K, Van Dongen W, Esmans E, Jauniaux T, Bouquegneau JM, Blust R, De Coen W (2003) Perfluorinated chemicals infiltrate ocean waters: link between exposure levels and stable isotope ratios in marine mammals. Environ Sci Technol 37:5545–5550CrossRefGoogle Scholar
  65. Van de Vijver KI, Hoff PT, Das K, Van Dongen W, Esmans EL, Siebert U, Bouquegneau JM, Blust R, De Coen WM (2004) Baseline study of perfluorochemicals in harbour porpoises (Phocoena phocoena) from Northern Europe. Mar Pollut Bull 48:992–997CrossRefGoogle Scholar
  66. Van de Vijver KI, Hoslbeek L, Das K, Blust R, Joiris C, De Coen W (2007) Occurrence of perfluorooctane sulfonate and other perfluorinated alkylated substances in harbor porpoises from the Black Sea. Environ Sci Technol 41:315–320CrossRefGoogle Scholar
  67. Wang T, Wang Y, Liao C, Cai Y, Jiang G (2009) Perspectives on the inclusion of perfuorooctane sulfonate into the Stockholm Convention on persistent organic pollutants. Environ Sci Technol 43:5171–5175CrossRefGoogle Scholar
  68. Xu L, Krenitsky DM, Seacat AM, Butenhoff JL, Anders MW (2004) Biotransformation of N-ethyl-N-(2-hydroxyethyl)perfluorooetanesulfonamide by rat liver microsomes, cytosol, and slices and by expressed rat and human cytochromes P450. Chem Res Toxicol 17:767–775CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anders Galatius
    • 1
    Email author
  • Rossana Bossi
    • 2
  • Christian Sonne
    • 1
  • Frank Farsø Rigét
    • 1
  • Carl Christian Kinze
    • 3
  • Christina Lockyer
    • 4
  • Jonas Teilmann
    • 1
  • Rune Dietz
    • 1
  1. 1.Department of BioscienceAarhus UniversityRoskildeDenmark
  2. 2.Department of Environmental ScienceAarhus UniversityRoskildeDenmark
  3. 3.Frederiksberg CDenmark
  4. 4.Age DynamicsKongens LyngbyDenmark

Personalised recommendations