Environmental Science and Pollution Research

, Volume 20, Issue 6, pp 3550–3569 | Cite as

Human health implications of clinically relevant bacteria in wastewater habitats

Wastewater Reuse Applications and Contaminants of Emerging Concern (WRA & CEC 2012)

Abstract

The objective of this review is to reflect on the multiple roles of bacteria in wastewater habitats with particular emphasis on their harmful potential for human health. Indigenous bacteria promote a series of biochemical and metabolic transformations indispensable to achieve wastewater treatment. Some of these bacteria may be pathogenic or harbour antibiotic resistance or virulence genes harmful for human health. Several chemical contaminants (heavy metals, disinfectants and antibiotics) may select these bacteria or their genes. Worldwide studies show that treated wastewater contain antibiotic resistant bacteria or genes encoding virulence or antimicrobial resistance, evidencing that treatment processes may fail to remove efficiently these bio-pollutants. The contamination of the surrounding environment, such as rivers or lakes receiving such effluents, is also documented in several studies. The current state of the art suggests that only some of antibiotic resistance and virulence potential in wastewater is known. Moreover, wastewater habitats may favour the evolution and dissemination of new resistance and virulence genes and the emergence of new pathogens. For these reasons, additional research is needed in order to obtain a more detailed assessment of the long-term effects of wastewater discharges. In particular, it is important to measure the human and environmental health risks associated with wastewater reuse.

Keywords

Wastewater Clinically relevant bacteria Antibiotic resistance Virulence Wastewater reuse 

Notes

Acknowledgements

This work was supported by National Funds from Fundação para a Ciência e a Tecnologia (FCT) through projects PEst-OE/EQB/LA0016/2011 and PTDC/AAC-AMB/113840/2009 and ARV grant SFRH/BD/44876/2008.

References

  1. Abraham W-R (2011) Megacities as sources for pathogenic bacteria in rivers and their fate downstream. J Microbiol 2011. doi:10.1155/2011/798292, article ID 798292
  2. ABSA (1984) American Biological Safety Association, http://www.absa.org. Accessed 14 Nov 2012
  3. Adler B, Lo M, Seemann T, Murray GL (2011) Pathogenesis of leptospirosis: the influence of genomics. Vet Microbiol 153:73–81. doi:10.1016/j.vetmic.2011.02.055 CrossRefGoogle Scholar
  4. Aleem A, Isar J, Malik A (2003) Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil. Bioresource Technol 86:7–13CrossRefGoogle Scholar
  5. Alexandrino M, Grohmann E, Szewzyk U (2004) Optimization of PCR-based methods for rapid detection of Campylobacter jejuni, Campylobacter coli and Yersinia enterocolitica serovar 0:3 in wastewater samples. Wat Res 38:1340–1346. doi:10.1016/j.watres.2003.10.036 CrossRefGoogle Scholar
  6. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microb 8:251–259. doi:10.1038/nrmicro2312 CrossRefGoogle Scholar
  7. Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169Google Scholar
  8. Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microb 8:260–71. doi:10.1038/nrmicro2319 Google Scholar
  9. APHA (1995) Standard methods for the examination of water, 19th edn. American Public Health Association, New YorkGoogle Scholar
  10. Araújo C, Torres C, Silva N, Carneiro C, Gonçalves A, Radhouani H, Correia S, da Costa PM, Paccheco R, Zarazaga M, Ruiz-Larrea F, Poeta P, Igrejas G (2010) Vancomycin-resistant enterococci from Portuguese wastewater treatment plants. J Basic Microb 50(6):605–9. doi:10.1002/jobm.201000102 CrossRefGoogle Scholar
  11. Auerbach EA, Seyfried EE, Mcmahon KD (2007) Tetracycline resistance genes in activated sludge wastewater treatment plants. Wat Res 41:1143–51. doi:10.1016/j.watres.2006.11.045 CrossRefGoogle Scholar
  12. Bahl MI, Hestbjerg Hansen L, Sorensen SJ (2006) Impact of conjugal transfer on the stability of IncP-1 plasmid pKJK5 in bacterial populations. FEMS Microbiol Lett 266:250–6. doi:10.1111/j.1574-6968.2006.00536.x CrossRefGoogle Scholar
  13. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–82. doi:10.1016/j.tim.2006.02.006 CrossRefGoogle Scholar
  14. Baquero F (2004) From pieces to patterns: evolutionary engineering in bacterial pathogens. Nat Rev Microbiol 2:510–18. doi:10.1038/nrmicro909 CrossRefGoogle Scholar
  15. Baquero F, Martínez J-L Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotech 19:260–5. doi:10.1016/j.copbio.2008.05.006 CrossRefGoogle Scholar
  16. Barker-Reid F, Fox EM, Faggian R (2010) Occurrence of antibiotic resistance genes in reclaimed water and river water in the Werribee Basin. Australia J Water Health 8:521–31. doi:10.2166/wh.2010.102 CrossRefGoogle Scholar
  17. Bertrand R, Roig B (2007) Evaluation of enrichment-free PCR-based detection on the rfbE gene of Escherichia coli O157-application to municipal wastewater. Wat Res 41:1280–6. doi:10.1016/j.watres.2006.11.027 CrossRefGoogle Scholar
  18. Böckelmann U, Dorries HH, Ayuso-Gabella MN, Marçay MS, Tandoi V, Levantesi C, Masciopinto C, Van Houtte E, Szewzyk U, Wintgens T, Grohmann E (2009) Quantitative PCR monitoring of antibiotic resistance genes and bacterial pathogens in three European artificial groundwater recharge systems. Appl Environ Microbiol 75:154–16. doi:10.1128/aem.01649-08 CrossRefGoogle Scholar
  19. Boczek LA, Rice EW, Johnston B, Johnson JR (2007) Occurrence of antibiotic-resistant uropathogenic Escherichia coli clonal group A in wastewater effluents. Appl Environment Microbiol 73:4180–4. doi:10.1128/aem.02225-06 CrossRefGoogle Scholar
  20. Börjesson S, Melin S, Matussek A, Lindgren P-E (2009) A seasonal study of the mecA gene and Staphylococcus aureus including methicillin-resistant S. aureus in a municipal wastewater treatment plant. Wat Res 43:925–32. doi:10.1016/j.watres.2008.11.036 CrossRefGoogle Scholar
  21. Börjesson S, Matussek A, Melin S, Löfgren S, Lindgren PE (2010) Methicillin-resistant Staphylococcus aureus (MRSA) in municipal wastewater: an uncharted threat? J Appl Microbiol 108:1244–51. doi:10.1111/j.1365-2672.2009.04515.x CrossRefGoogle Scholar
  22. Braoudaki M, Hilton AC (2004) Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J Clin Microbiol 42:73–8. doi:10.1128/JCM.42.1.73-78.2004 CrossRefGoogle Scholar
  23. Brisse S, Fevre C, Passet V, Issenhuth-Jeanjean S, Tournebize R, Diancourt L, Grimont P (2009) Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One 4:e4982. doi:10.1371/journal.pone.0004982 CrossRefGoogle Scholar
  24. Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerne SA, Levy S, Lewis K, Lomovskaya O, Miller JH, Mobashery S, Piddock LJ, Projan S, Thomas CM, Tomasz A, Tulkens PM, Walsh TR, Watson JD, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya HI (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9:894–6. doi:10.1038/nrmicro2693 CrossRefGoogle Scholar
  25. Campos C (2008) New perspectives on microbiological water control for wastewater reuse. Desalination 218:34–42. doi:10.1016/j.desal.2007.08.002 CrossRefGoogle Scholar
  26. Cantón R (2009) Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin Microbiol Infect 15:20–5. doi:10.1111/j.1469-0691.2008.02679.x CrossRefGoogle Scholar
  27. Catalan V, Garcia F, Moreno C, Vila MJ, Apraiz D, Ualona L (1997) Detection of Legionella pneumophila in wastewater by nested polymerase chain reaction. Res Microbiol 148:71–78. doi:10.1016/S0923-2508(97)81902-X CrossRefGoogle Scholar
  28. CDC (1946) http://www.cdc.gov. Center for Disease Control and Prevention, Atlanta. Accessed 6 Nov 2012
  29. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33:D325–8. doi:10.1093/nar/gki008 CrossRefGoogle Scholar
  30. Chen B, Zheng W, Yu Y, Huang W, Zheng S, Zhang Y, Guan X, Zhuang Y, Chen N, Topp E (2011) Class 1 integrons selected virulence genes and antibiotic resistance in Escherichia coli isolates from the Minjiang River Fujian Province China. Appl Environ Microb 77:148–55. doi:10.1128/aem.01676-10 CrossRefGoogle Scholar
  31. Cheng H-WA, Lucy FE, Broaders MA, Mastitsky SE, Chen C-H, Murray A (2012) Municipal wastewater treatment plants as pathogen removal systems and as a contamination source of noroviruses and Enterococcus faecalis. J Water Health 10:380–9. doi:10.2166/wh.2012.138 CrossRefGoogle Scholar
  32. Chetta M, Bafunno V, Grillo R, Mele A, Lo Perfido P, Notarnicola M, Cellini F, Cifarelli R (2012) SYBR green real time-polymerase chain reaction as a rapid and alternative assay for the efficient identification of all existing Escherichia coli biotypes approved directly in wastewater samples. Biotechnol Prog 28:1106–13. doi:10.1002/btpr.1573 CrossRefGoogle Scholar
  33. Chouari R, Le Paslier D, Daegelen P, Dauga C, Weissenbach J, Sghir A (2010) Molecular analyses of the microbial community composition of an anoxic basin of a municipal wastewater treatment plant reveal a novel lineage of proteobacteria. Microb Ecol 60:272–81. doi:10.1007/s00248-009-9632-7 CrossRefGoogle Scholar
  34. Cirelli GL, Consoli S, Licciardello F, Aiello R, Giuffrida F, Leonardi C (2012) Treated municipal wastewater reuse in vegetable production. Agr Water Manage 104:163–70. doi:10.1016/j.agwat.2011.12.011 CrossRefGoogle Scholar
  35. Clara M, Kreuzinger N, Strenn B, Gans O, Kroiss H (2005) The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res 39:97–106. doi:1016/j.watres.2004.08.036 CrossRefGoogle Scholar
  36. Collado L, Figueras MJ (2011) Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin Microbiol Rev 24:174–192. doi:10.1128/cmr.00034-10 CrossRefGoogle Scholar
  37. Colomer-Lluch M, Jofre J, Muniesa M (2011) Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One 6:e17549. doi:10.1371/journal.pone.0017549 CrossRefGoogle Scholar
  38. Council Directive 91/271/EEC (1991) Council Directive 91/271/EEC of 21 May 1991 concerning urban waste-water treatment.Google Scholar
  39. Czekalski N, Berthold T, Caucci S, Egli A, Bürgmann H (2012) Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Front Microb 3:1–18. doi:10.3389/fmicb.2012.00106 Google Scholar
  40. Dalkmann P, Broszat M, Siebe C, Willaschek E, Sakinc T, Huebner J, Amelung W, Grohmann E, Siemens J (2012) Accumulation of pharmaceuticals, Enterococcus and resistance genes in soils irrigated with wastewater for zero to 100 years in central Mexico. PLoS One 7:E45397. doi:10.1371/journal.pone.0045397 CrossRefGoogle Scholar
  41. Davies EGR, Simonovic SP (2011) Global water resources modeling with an integrated model of the social–economic–environmental system. Adv Water Resour 34:684–700. doi:10.1016/j.advwatres.2011.02.010 CrossRefGoogle Scholar
  42. Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9:1–9. doi:10.1016/j.mib.2006.08.006 CrossRefGoogle Scholar
  43. D'Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature 477:457–61. doi:10.1038/nature10388 CrossRefGoogle Scholar
  44. De Boeck H, Miwanda B, Lunguya-Metila O, Muyembe-Tamfum JJ, Stobberingh E, Glupczynski Y, Jacobs J (2012) ESBL-positive Enterobacteria isolates in drinking water. Emerg Infect Dis 18:1019–020. doi:10.3201/eid1806.111214 CrossRefGoogle Scholar
  45. Dodd MC (2012) Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. J Environ Monitor 14:1754–71. doi:10.1039/c2em00006g CrossRefGoogle Scholar
  46. Drudge CN, Elliott AV, Plach JM, Ejim LJ, Wright GD, Droppo IG, Warren LA (2012) Diversity of integron- and culture-associated antibiotic resistance genes in freshwater floc. Appl Environ Microbiol 78:4367–72. doi:10.1128/aem.00405-12 CrossRefGoogle Scholar
  47. ECDC (2005) http://www.ecdc.europa.eu. European Centre of Disease Prevention and Control, Stockholm. Accessed 13 Nov 2012
  48. el Gamili M, Ibrahim H, Hassaneen A, Abdalla M, Ismael A (2001) Defunct Nile branches inferred from a geoelectric resistivity survey on Samannud area, Nile Delta, Egypt. J Archaeol Sci 28:1339–48. doi:10.1006/jasc.2001.0761 CrossRefGoogle Scholar
  49. Espigares E, Bueno A, Espigares M, Gálvez R (2006) Isolation of Salmonella serotypes in wastewater and effluent: effect of treatment and potential risk. Int J Hyg Environ Health 209:103–7. doi:10.1016/j.ijheh.2005.08.006 CrossRefGoogle Scholar
  50. Faria C, Vaz-Moreira I, Serapicos E, Nunes OC, Manaia CM (2009) Antibiotic resistance in coagulase negative staphylococci isolated from wastewater and drinking water. Sci Total Environ 407:3876–82. doi:10.3389/fmicb.2012.0010 CrossRefGoogle Scholar
  51. Ferreira Da Silva M, Tiago I, Veríssimo A, Boaventura RAR, Nunes OC, Manaia CM (2006) Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant. FEMS Microbiol Ecol 55:322–9. doi:10.1111/j.1574-6941.2005.00032.x CrossRefGoogle Scholar
  52. Ferreira da Silva M, Vaz-Moreira I, Gonzalez-Pajuelo M, Nunes OC, Manaia CM (2007) Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol Ecol 60:166–76. doi:10.1111/j.1574-6941.2006.00268.x CrossRefGoogle Scholar
  53. Figueira V, Vaz-Moreira I, Silva M, Manaia CM (2011) Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. Water Res 45:5599–611. doi:10.1016/j.watres.2011.08.021 CrossRefGoogle Scholar
  54. FigueiraV SEA, Vaz-Moreira I, Brandão TR, Manaia CM (2012) Comparison of ubiquitous antibiotic-resistant Enterobacteriaceae populations isolated from wastewaters, surface waters and drinking waters. J Wat Health 10:1–10. doi:10.2166/wh.2011.002 CrossRefGoogle Scholar
  55. Fondi M, Fani R (2010) The horizontal flow of the plasmid resistome: clues from inter-generic similarity networks. Environ Microbiol 12:3228–42. doi:10.1111/j1462-2920201002295x CrossRefGoogle Scholar
  56. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–11. doi:10.1126/science.1220761 CrossRefGoogle Scholar
  57. Forslund A, Ensink JHJ, Battilani A, Kljujev I, Gola S, Raicevic V, Jovanovic Z, Stikic R, Sandei L, Fletcher T, Dalsgaard A (2010) Faecal contamination and hygiene aspect associated with the use of treated wastewater and canal water for irrigation of potatoes (Solanum tuberosum). Agr Wat Manage 98:440–50. doi:10.1016/j.agwat.2010.10.007 CrossRefGoogle Scholar
  58. Gajan EB, Abashov R, Aghazadeh M, Eslami H, Oskouei SG, Mohammadnejad D (2008) Vancomycin-resistant Enterococcus faecalis from a wastewater treatment plant in Tabriz, Iran. Pak J Biol Sci 11:2443–2446CrossRefGoogle Scholar
  59. García-Aljaro C, Muniesa M, Blanco JE, Blanco M, Blanco J, Jofre J, Blanch AR (2005) Characterization of Shiga toxin-producing Escherichia coli isolated from aquatic environments. FEMS Microbiol letters 246:55–65. doi:10.1016/j.femsle.2005.03.038 CrossRefGoogle Scholar
  60. García-Aljaro C, Moreno E, Andreu A, Prats G, Blanch AR (2009) Phylogroups, virulence determinants and antimicrobial resistance in stx(2) gene-carrying Escherichia coli isolated from aquatic environments. Res Microbiol 160:585–91. doi:10.1016/j.resmic.2009.08.004 CrossRefGoogle Scholar
  61. Girones R, Ferrús MA, Alonso JL, Rodriguez-Manzano J, Calgua B, Corrêa AA, Hundesa A, Carratala A, Bofill-Mas S (2010) Molecular detection of pathogens in water—the pros and cons of molecular techniques. Water Res 44:4325–39. doi:10.1016/jwatres.201006030 CrossRefGoogle Scholar
  62. Goñi-Urriza M, Capdepuy M, Arpin C, Raymond N, Caumette P, Quentin C (2000) Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp. Appl Environ Microb 66:125–32. doi:10.1128/aem.66.1.125-132.2000 CrossRefGoogle Scholar
  63. Graham DW, Olivares-Rieumont S, Knapp CW, Lima L, Werner D, Bowen E (2011) Antibiotic resistance gene abundances associated with waste discharges to the Almendares River near Havana Cuba. Environ Sci Technol 45:418–24. doi:10.1021/es102473z CrossRefGoogle Scholar
  64. Grant SB, Saphores JD, Feldman DL, Hamilton AJ, Fletcher TD, Cook PL, Stewardson M, Sanders BF, Levin LA, Ambrose RF, Deletic A, Brown R, Jiang SC, Rosso D, Cooper WJ, Marusic I (2012) Taking the "waste" out of "wastewater" for human water security and ecosystem sustainability. Science 337:681–6. doi:10.1126/science1216852 CrossRefGoogle Scholar
  65. Hanjra MA, Blackwell J, Carr G, Zhang F, Jackson TM (2012) Wastewater irrigation and environmental health: implications for water governance and public policy. Int J Hyg Environ Health 215:255–69. doi:10.1016/j.ijheh.2011.10.003 CrossRefGoogle Scholar
  66. Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D (2008) Biological wastewater treatment principles, modelling and design. IWA, LondonGoogle Scholar
  67. Hernandéz A, Mellado RP, Martinez JL (1998) Metal accumulation and vanadium-induced multidrug resistance by environmental isolates of Escherichia hermannii and Enterobacter cloacae. Appl Environ Microbiol 64:4317–4320Google Scholar
  68. Hernández F, Sancho JV, Ibáñez M, Abad E, Portolés T, Mattioli L (2012) Current use of high-resolution mass spectrometry in the environmental sciences. Anal Bioanal Chem 403:1251–64. doi:10.1007/s00216-012-5844-7 CrossRefGoogle Scholar
  69. Hsieh P-F, Lin T-L, Yang F-L, Wu M-C, Pan Y-J, Wu S-H, Wang J-T (2012) Lipopolysaccharide O1 antigen contributes to the virulence in Klebsiella pneumoniae causing pyogenic liver abscess. PLoS One 7:e33155. doi:10.1371/journal.pone.0033155 CrossRefGoogle Scholar
  70. Ibekwe AM, Watt PM, Grieve CM, Sharma K, Sharma VK, Lyons SR (2002) Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157:H7 in dairy wastewater wetlands. Appl Environ Microbiol 68:4853–62. doi:10.1128/aem.68.10.4853-4862.2002 CrossRefGoogle Scholar
  71. Igbinosa EO, Obi LC, Okoh AI (2009) Occurrence of potentially pathogenic vibrios in final effluents of a wastewater treatment facility in a rural community of the Eastern Cape Province of South Africa. Res Microbiol 160:531–7. doi:10.1016/j.resmic.2009.08.007 CrossRefGoogle Scholar
  72. Igbinosa EO, Obi CL, Okoh AI (2011a) Seasonal abundance and distribution of Vibrio species in the treated effluent of wastewater treatment facilities in suburban and urban communities of Eastern Cape Province South Africa. J Microbiol 49:224–32. doi:10.1007/s12275-011-0227-x CrossRefGoogle Scholar
  73. Igbinosa EO, Obi LC, Tom M, Okoh AI (2011b) Detection of potential risk of wastewater effluents for transmission of antibiotic resistance from Vibrio species as a reservoir in a peri-urban community in South Africa. Int J Environ Health Res 21:402–14. doi:10.1080/09603123.2011.572278 CrossRefGoogle Scholar
  74. Imamovic L, Ballesté E, Jofre J, Muniesa M (2010) Quantification of Shiga toxin-converting bacteriophages in wastewater and in fecal samples by real-time quantitative PCR. Appl Environ Microbiol 76:5693–5701. doi:10.1128/aem.00107-10 CrossRefGoogle Scholar
  75. Jelić A, Gros M, Petrović M, Ginebreda A, Barceló D (2012) Occurrence and elimination of pharmaceuticals during conventional wastewater treatment. In: Barceló D (ed) The handbook of environmental chemistry. Springer, Berlin, pp 1–23. doi:10.1007/978-3-642-25722-3_1
  76. Kelessidis A, Stasinakis AS (2012) Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag 32:1186–95. doi:10.1016/j.wasman.2012.01.012 CrossRefGoogle Scholar
  77. Kerouanton A, Roche SM, Marault M, Velge P, Pourcher A-M, Brisabois A, Federighi M, Garrec N (2010) Characterization of isolates of Listeria monocytogenes from sludge using pulsed-field gel electrophoresis and virulence assays. J Appl Microbiol 108:1380–8. doi:10.1111/j.1365-2672.2009.04531.x CrossRefGoogle Scholar
  78. Kim J, Kang HY, Lee Y (2008) The identification of CTX-M-14 TEM-52 and CMY-1 enzymes in Escherichia coli isolated from the Han River in Korea. J Microbiol 46:478–81. doi:10.1007/s12275-008-0150-y CrossRefGoogle Scholar
  79. Koczura R, Mokracka J, Barczak A, Krysiak N, Kaznowski A (2012) Association between the presence of class 1 integrons virulence genes and phylogenetic groups of Escherichia coli isolates from river water. Microb Ecol 65:84–90. doi:10.1007/s00248-012-0101-3 CrossRefGoogle Scholar
  80. Koutsoyiannis D, Zarkadoulas N, Angelakis A, Tchobanoglous G (2008) Urban water management in ancient Greece: legacies and lessons. J Water Resource Plan Manage 134:45–54. doi:10.1061/(ASCE)0733-9496, 134:1(45)CrossRefGoogle Scholar
  81. Kümmerer K (2009a) Antibiotics in the aquatic environment—a review. Part I. Chemosphere 75:417–34CrossRefGoogle Scholar
  82. Kümmerer K (2009b) Antibiotics in the aquatic environment—a review. Part II. Chemosphere 75:435–41CrossRefGoogle Scholar
  83. Lachmayr KL, Kerkhof LJ, Dirienzo AG, Cavanaugh CM, Ford TE (2009) Quantifying nonspecific TEM beta-lactamase (bla TEM) genes in a wastewater stream. Appl Environ Microbiol 75:203–11. doi:10.1128/aem.01254-08 CrossRefGoogle Scholar
  84. Lanthier M, Scott A, Lapen DR, Zhang Y, Topp E (2010) Frequency of virulence genes and antibiotic resistances in Enterococcus spp. isolates from wastewater and feces of domesticated mammals and birds, and wildlife. Can J Microbiol 729:715–29. doi:10.1139/W10-046 CrossRefGoogle Scholar
  85. LaPara TM, Burch TR, McNamara PJ, Tan DT, Yan M, Eichmiller JJ (2011) Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor. Environ Sci Technol 45:9543–9549. doi:10.1021/es202775r CrossRefGoogle Scholar
  86. Leclerc H, Schwartzbrod L, Dei-Cas E (2002) Microbial agents associated with waterborne diseases. Crit Rev Microbiol 28:371–409. doi:10.1080/1040-840291046768 CrossRefGoogle Scholar
  87. Lee D, Shannon K, Beaudette LA (2006) Detection of bacterial pathogens in municipal wastewater using an oligonucleotide microarray and real-time quantitative PCR. J Microbiolog Meth 65:453–67. doi:10.1016/j.mimet.2005.09.008 CrossRefGoogle Scholar
  88. Lee D, Lauder H, Cruwys H, Falletta P, Beaudette LA (2008) Development and application of an oligonucleotide microarray and real-time quantitative PCR for detection of wastewater bacterial pathogens. Sci Total Environ 8:203–211. doi:10.1016/j.scitotenv.2008.03.004 CrossRefGoogle Scholar
  89. Li D, Yang M, Hu J, Zhang J, Liu R, Gu X, Zhang Y, Wang Z (2009) Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river. Environ Microbiol 11:1506–17. doi:10.1111/j.1462-2920.2008.01810.x CrossRefGoogle Scholar
  90. Li D, Yu T, Zhang Y, Yang M, Li Z, Liu M, Qi R (2010) Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river. Appl Environ Microbiol 76:3444–51. doi:10.1128/aem02214-09.x CrossRefGoogle Scholar
  91. Licht TR, Christensen BB, Krogfelt KA, Molin S (1999) Plasmid transfer in the animal intestine and other dynamic bacterial populations: the role of community structure and environment. Microbiol 145:2615–22Google Scholar
  92. Liu B, Pop M (2009) ARDB—Antibiotic Resistance Genes Database. Nucleic Acids Res 37:443–7. doi:10.1093/nar/gkn656 CrossRefGoogle Scholar
  93. Lu Y, Redlinger TE, Avitia R, Galindo A, Goodman K (2002) Isolation and genotyping of Helicobacter pylori from untreated municipal wastewater. Appl Environ Microbiol 68:1436–1439. doi:10.1128/aem.68.3.1436-1439.2002 CrossRefGoogle Scholar
  94. Lucho-Constantino CA, Alvarez-Suárez M, Beltrán-Hernández RI, Prieto-García F, Poggi-Varaldo HM (2005) A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State Mexico irrigated with raw wastewater. Environ Int 31:313–23. doi:10.1016/j.envint.2004.08.00 CrossRefGoogle Scholar
  95. Luczkiewicz A, Jankowska K, Fudala-Ksiazek S, Olanczuk-Neyman K (2010) Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant. Water Res 44:5089–97. doi:10.1016/j.watres.2010.08.007 CrossRefGoogle Scholar
  96. Lupo A, Coyne S, Berendonk T (2012) Origin and evolution of antibiotic resistance: the common mechanism of emergence and spread in water bodies. Front Microbiol 3:18. doi:10.3389/fmicb.2012.00018 CrossRefGoogle Scholar
  97. Manaia CM, Vaz-Moreira I, Nunes OC (2012) Antibiotic resistance in waste water and surface water and human health implications. In: Barceló D (ed) Emerging organic contaminants and human health. Springer, Berlin, pp 173–212. doi:10.1007/698_2011_173-212 Google Scholar
  98. Mara D, Cairncross S (1989) Guidelines for the safe use of wastewater and excreta in agriculture and aquaculture. World Health Organization, GenevaGoogle Scholar
  99. Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–902. doi:10.1016/j.envpol.2009.05.051 CrossRefGoogle Scholar
  100. Martínez-Castillo A, Allué-Guardia A, Dahbi G, Blanco J, Creuzburg K, Schmidt H, Muniesa M (2012) Type III effector genes and other virulence factors of Shiga toxin-encoding Escherichia coli isolated from wastewater. Environ Microbiol Reports 4:147–155. doi:10.1111/j.1758-2229.2011.00317.x CrossRefGoogle Scholar
  101. McLellan SL, Huse SM, Mueller-Spitz SR, Andreishcheva EN, Sogin ML (2010) Diversity and population structure of sewage derived microorganisms in wastewater treatment plant influent. Environ Microbiol 12:378–92. doi:10.1111/j.1462-2920.2009.02075.x CrossRefGoogle Scholar
  102. Michael I, Hapeshi E, Michael C, Varela AR, Kyriakou S, Manaia CM, Fatta-Kassinos D (2012) Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res 46:5621–34. doi:10.1016/j.watres.2012.07.049 CrossRefGoogle Scholar
  103. Miyahara E, Nishie M, Takumi S, Miyanohara H, Nishi J, Yoshiie K, Oda H, Takeuchi M, Komatsu M, Aoyama K, Horiuchi M, Takeuchi T (2011) Environmental mutagens may be implicated in the emergence of drug-resistant microorganisms. FEMS Microbiol Lett 317:109–16. doi:10.1111/j.1574-6968.2011.02215.x CrossRefGoogle Scholar
  104. Mokracka J, Koczura R, Pawlowski K, Kaznowski A (2011) Resistance patterns and integron cassette arrays of Enterobacter cloacae complex strains of human origin. J Medic Microb 60:737–43. doi:10.1099/jmm.0.027979-0 CrossRefGoogle Scholar
  105. Moreno Y, Ferrús MA (2012) Specific detection of cultivable Helicobacter pylori cells from wastewater treatment plants. Helicobacter 17:327–32. doi:10.1111/j.1523-5378.2012.00961.x CrossRefGoogle Scholar
  106. Moreno Y, Ballesteros L, García-Hernández J, Santiago P, González A, Ferrús MA (2011) Specific detection of viable Listeria monocytogenes in Spanish wastewater treatment plants by fluorescent in situ hybridization and PCR. Water Res 45:4634–40. doi:10.1016/j.watres.2011.06.015 CrossRefGoogle Scholar
  107. Moura A, Tacão M, Henriques I, Dias J, Ferreira P, Correia A (2009) Characterization of bacterial diversity in two aerated lagoons of a wastewater treatment plant using PCR-DGGE analysis. Microbiol Res 5:560–9. doi:10.1016/j.micres.2007.06.005 CrossRefGoogle Scholar
  108. Moura A, Henriques I, Smalla K, Correia A (2010) Wastewater bacterial communities bring together broad-host range plasmids, integrons and a wide diversity of uncharacterized gene cassettes. Res Microbiol 161:58–66. doi:10.1016/j.resmic.2009.11.004 CrossRefGoogle Scholar
  109. Moura A, Pereira C, Henriques I, Correia A (2012) Novel gene cassettes and integrons in antibiotic-resistant bacteria isolated from urban wastewaters. Res Microbiol 163:92–100. doi:10.1016/j.resmic.2011.10.010 CrossRefGoogle Scholar
  110. Narciso-da-Rocha C, Vaz-Moreira I, Svensson-Stadler L, Moore ERB, Manaia CM (2012) Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap. Appl Microbiol Biotechnol 97:329–340. doi:10.1007/s00253-012-4190-1 CrossRefGoogle Scholar
  111. Nayak AK, Rose JB (2007) Detection of Helicobacter pylori in sewage and water using a new quantitative PCR method with SYBR green. J Appl Microbiol 103:1931–1941. doi:10.1111/j.1365-2672.2007.03435.x CrossRefGoogle Scholar
  112. Negreanu Y, Pasternak Z, Jurkevitch E, Cytryn E (2012) Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils. Environ Sci Technol 46:4800–8. doi:10.1021/es204665b CrossRefGoogle Scholar
  113. Nguyen TMN, Ilef D, Jarraud S, Rouil L, Campese C, Che D, Haeghebaert S, Ganiayre F, Marcel F, Etienne J, Desenclos J (2006) A community-wide outbreak of legionnaires disease linked to industrial cooling towers — how far can contaminated aerosols spread? J Infect Dis 193:102–11. doi:10.1086/498575 CrossRefGoogle Scholar
  114. Novo A, Manaia CM (2010) Factors influencing antibiotic resistance burden in municipal wastewater treatment plants. Appl Microbiol Biotechnol 87:1157–66. doi:10.1007/s00253-010-2583-6 CrossRefGoogle Scholar
  115. Novo A, André S, Viana P, Nunes OC, Manaia CM (2013) Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Res 47:1875–1887Google Scholar
  116. Oberlé K, Capdeville M, Berthe T, Petit F (2012) Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: from medical center patients to a receiving environment. Environ Sci Technol 46:1859–68. doi:10.1021/es203399h CrossRefGoogle Scholar
  117. Odjadjare EEO, Obi LC, Okoh AI (2010) Municipal wastewater effluents as a source of listerial pathogens in the aquatic milieu of the eastern cape province of South Africa: a concern of public health importance. Int J Environ Res Public Health 23:2376–94. doi:10.3390/ijerph7052376 CrossRefGoogle Scholar
  118. Okoh AI, Igbinosa EO (2010) Antibiotic susceptibility profiles of some Vibrio strains isolated from wastewater final effluents in a rural community of the Eastern Cape Province of South Africa. BMC Microbiol 10:143. doi:10.1186/1471-2180-10-143 CrossRefGoogle Scholar
  119. Olsen JS, Aarskaug T, Thrane I, Pourcel C, Ask E, Johansen G, Waagen V, Blatny JM (2010) Alternative routes for dissemination of Legionella pneumophila causing three outbreaks in Norway. Environ Sci Technol 44:8712–17. doi:10.1021/es1007774 CrossRefGoogle Scholar
  120. Pallecchi L, Lucchetti C, Bartoloni A, Bartalesi F, Mantella A, Gamboa H, Carattoli A, Paradisi F, Rossolini GM (2007) Population structure and resistance genes in antibiotic-resistant bacteria from a remote community with minimal antibiotic exposure. Antimicrob Agents Chemother 51:1179–84CrossRefGoogle Scholar
  121. Pallecchi L, Bartoloni A, Paradisi F, Rossolini GM (2008) Antibiotic resistance in the absence of antimicrobial use: mechanisms and implications. Expert Rev Anti Infect Ther 6:725–732. doi:10.1586/14787210.6.5.725 CrossRefGoogle Scholar
  122. Partridge SR, Tsafnat G, Coiera E, Iredell JR (2009) Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 33:757–84. doi:10.1111/j.1574-6976.2009.00175.x CrossRefGoogle Scholar
  123. Pereira BFF, He ZL, Silva MS, Herpin U, Nogueira SF, Montes CR, Melfi AJ (2011) Reclaimed wastewater: impact on soil-plant system under tropical conditions. J Haz Mat 192:54–61. doi:10.1016/j.jhazmat.2011.04.095 Google Scholar
  124. Petrovic M, Farré M, de Alda ML, Perez S, Postigo C, Köck M, Radjenovic J, Gros M, Barceló D (2010) Recent trends in the liquid chromatography-mass spectrometry analysis of organic contaminants in environmental samples. J Chromatogr A 1217:4004–17. doi:10.1016/jchroma201002059 CrossRefGoogle Scholar
  125. Poirel L, Kampfer P, Nordmann P (2002) Chromosome-encoded Ambler class A beta-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum beta-lactamases. Antmicrob Agents Ch 46:4038–40. doi:10.1128/aac.46.12.4038-4040.2002 CrossRefGoogle Scholar
  126. Poirel L, Rodriguez-Martinez JM, Mammeri H, Liard A, Nordmann P (2005) Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob Agents Ch 49:3523–25. doi:10.1128/aac.49.8.3523-3525.2005 CrossRefGoogle Scholar
  127. Prüss-Üstün A, Corvalán C (2012) Preventing disease through healthy environments. World Health Organization, GenevaGoogle Scholar
  128. Radjenovic J, Petrovic M, Barceló D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43:831–41. doi:10.1016/j.watres.2008.11.043 CrossRefGoogle Scholar
  129. Radomski N, Betelli L, Moilleron R, Haenn S, Moulin L, Cambau E, Rocher V, Gonçalves A, Lucas FS (2011) Mycobacterium behavior in wastewater treatment plant: a bacterial model distinct from Escherichia coli and Enterococci. Environ Sci Technol 45:5380–6. doi:10.1021/es104084c CrossRefGoogle Scholar
  130. Rani A, Porwal S, Sharma R, Kapley A, Purohit HJ, Kalia VC (2008) Assessment of microbial diversity in effluent treatment plants by culture dependent and culture independent approaches. Bioresour Technol 99:7098–107. doi:10.1016/j.biortech.2008.01.003 CrossRefGoogle Scholar
  131. Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–9. doi:10.1111/j.1462-2920.2004.00664.x CrossRefGoogle Scholar
  132. Riordan JT, Dupre JM, Cantore-Matyi SA, Kumar-Singh A, Song Y, Zaman S, Horan S, Helal NS, Nagarajan V, Elasri MO, Wilkinson BJ, Gustafson JE (2011) Alterations in the transcriptome and antibiotic susceptibility of Staphylococcus aureus grown in the presence of diclofenac. Ann Clin Microbiol Antimicrob 10:30. doi:10.1186/1476-0711-10-30 CrossRefGoogle Scholar
  133. Rivera ING, Chun J, Huq A, Sack RB, Colwell RR (2001) Genotypes associated with virulence in environmental isolates of Vibrio cholera. Appl Environ Microbiol 67:2421–9. doi:10.1128/aem.67.6.2421-2429.2001 CrossRefGoogle Scholar
  134. Rizzo L, Fiorentino A, Anselmo A (2012) Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream. Sci Total Environ 427–428:263–8. doi:10.1016/j.scitotenv.2012.03.062 CrossRefGoogle Scholar
  135. Rizzo L, Manaia CM, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a Review. Sci Tot Environ 447:345–360Google Scholar
  136. Roe MT, Vega E, Pillai SD (2003) Antimicrobial resistance markers of class 1 and class 2 integron- bearing Escherichia coli from irrigation water and sediments. Emerg Infect Dis 9:5–9. doi:10.3201/eid0907.020529 CrossRefGoogle Scholar
  137. Sanapareddy N, Hamp TJ, Gonzalez LC, Hilger HA, Fodor AA, Clinton SM (2009) Molecular diversity of a North Carolina wastewater treatment plant as revealed by pyrosequencing. Appl Environ Microb 75:1688–96. doi:10.1128/aem.01210-08 CrossRefGoogle Scholar
  138. Schlüter A, Szczepanowski R, Pühler A, Top EM (2007) Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 31:449–77. doi:10.1111/j.1574-6976.2007.00074.x CrossRefGoogle Scholar
  139. Schlüter A, Krause L, Szczepanowski R, Goesmann A, Pühler A (2008) Genetic diversity and composition of a plasmid metagenome from a wastewater treatment plant. J Biotechnol 136:65–76. doi:10.1016/j.jbiotec.2008.03.017 CrossRefGoogle Scholar
  140. Schmieder R, Edwards R (2012) Insights into antibiotic resistance through metagenomic approaches. Future Microbiol 7:73–89. doi:10.2217/fmb.11.135 CrossRefGoogle Scholar
  141. Schwartz T, Volkmann H, Kirchen S, Kohnen W, Schön-Hölz K, Jansen B, Obst U (2006) Real-time PCR detection of Pseudomonas aeruginosa in clinical and municipal wastewater and genotyping of the ciprofloxacin-resistant isolates. FEMS Microbiol Ecol 57:158–67. doi:10.1111/j.1574-6941.2006.00100.x CrossRefGoogle Scholar
  142. Segura PA, François M, Gagnon C, Sauvé S (2009) Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters. Environ Health Persp 117:675–84. doi:10.1289/ehp.11776 CrossRefGoogle Scholar
  143. Shannon KE, Lee D, Trevors JT, Beaudette LA (2007) Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment. Sci Total Environ 382:121–9. doi:10.1016/j.scitotenv.2007.02.039 CrossRefGoogle Scholar
  144. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–61. doi:10.1128/aem.02345-10 CrossRefGoogle Scholar
  145. Skippington E, Ragan MA (2011) Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 35:707–35. doi:10.1111/j.1574-6976.2010.00261.x CrossRefGoogle Scholar
  146. Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20. doi:10.1111/j1574-6941200800629x CrossRefGoogle Scholar
  147. Sommer MO, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–31. doi:10.1126/science.1176950 CrossRefGoogle Scholar
  148. Sommer MO, Church GM, Dantas G (2010) The human microbiome harbors a diverse reservoir of antibiotic resistance genes. Virulence 1:299–303. doi:10.4161/viru.1.4.12010 CrossRefGoogle Scholar
  149. Sorensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3:700–10. doi:10.1038/nrmicro1232 CrossRefGoogle Scholar
  150. Stoll C, Sidhu JPS, Tiehm A, Toze S (2012) Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia. Environ Sci Technol 46:9716–26. doi:10.1021/es302020s CrossRefGoogle Scholar
  151. Straub TM, Pepper IL, Gerba CP (1993) Hazards from pathogenic microorganisms in land-disposed sewage sludge. Rev Environ Contam Toxicol 132:55–91CrossRefGoogle Scholar
  152. Su C, Lei L, Duan Y, Zhang KQ, Yang J (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93:993–1003. doi:10.1007/s00253-011-3800-7 CrossRefGoogle Scholar
  153. Swamy SC, Barnhart HM, Lee MD (1996) Virulence determinants invA and spvC in salmonellae isolated from poultry products, wastewater, and human sources. Appl Environ Microbiol 62:3768–71Google Scholar
  154. Szczepanowski R, Braun S, Riedel V, Schneiker S, Krahn I, Pühler A, Schlüter A (2005) The 120592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. Microbiology 151:1095–111. doi:10.1099/mic.0.27773-0 CrossRefGoogle Scholar
  155. Szczepanowski R, Krahn I, Bohn N, Puhler A, Schluter A (2007) Novel macrolide resistance module carried by the IncP-1beta resistance plasmid pRSB111, isolated from a wastewater treatment plant. Antimicrob Agents Chemother 51:673–8. doi:10.1128/aac.00802-06 CrossRefGoogle Scholar
  156. Szczepanowski R, Bekel T, Goesmann A, Krause L, Krömeke H, Kaiser O, Eichler W, Pühler A, Schlüter A (2008) Insight into the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to antimicrobial drugs analysed by the 454-pyrosequencing technology. J Biotechnol 136:54–64. doi:10.1371/journal.pone.0026041 CrossRefGoogle Scholar
  157. Szczepanowski R, Linke B, Krahn I, Gartemann K-H, Gutzkow T, Eichler W, Puhler A, Schulter A (2009) Detection of 140 clinically relevant antibiotic- resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 155:2306–19. doi:10.1099/mic.0.028233-0 CrossRefGoogle Scholar
  158. Tamames J, Abellán JJ, Pignatelli M, Camacho A, Moya A (2010) Environmental distribution of prokaryotic taxa. BMC Microbiol 10:85. doi:10.1186/1471-2180-10-85 CrossRefGoogle Scholar
  159. Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering (treatment disposal reuse)/ Metcalf & Eddy Inc, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  160. Tello A, Austin B, Telfer TC (2012) Selective pressure of antibiotic pollution on bacteria of importance to public health. Environ Health Persp 120:1100–6. doi:10.1289/ehp.1104650 CrossRefGoogle Scholar
  161. Torvinen E, Suomalainen S, Lehtola MJ, Miettinen IT, Zacheus O, Paulin L, Katila M, Martikainen PJ (2004) Mycobacteria in water and loose deposits of drinking water distribution systems in Finland. Appl Environ Microb 70:1973–81. doi:10.1128/aem.70.4.1973-1981.2004 CrossRefGoogle Scholar
  162. Vandewalle JL, Goetz GW, Huse SM, Morrison HG, Sogin ML, Hoffmann RG, Yan K, McLellan SL (2012) Acinetobacter, Aeromonas and Trichococcus populations dominate the microbial community within urban sewer infrastructure. Appl Environ Microbiol 14:2538–52. doi:10.1111/j.1462-2920.2012.02757.x CrossRefGoogle Scholar
  163. Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of “unculturable” bacteria. FEMS Microbiol Lett 309:1–7. doi:10.1111/j.1574-6968.2010.02000.x Google Scholar
  164. Vaz-Moreira I, Egas C, Nunes OC, Manaia CM (2011a) Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample. Antonie van Leeuwenhoek 100:245–57. doi:10.1007/s10482-011-9583-0 CrossRefGoogle Scholar
  165. Vaz-Moreira I, Nunes OC, Manaia CM (2011b) Diversity and antibiotic resistance patterns of Sphingomonadaceae isolated from drinking water. Appl Environ Microbiol 77:5697–706. doi:10.1128/aem.00579-11 CrossRefGoogle Scholar
  166. Vaz-Moreira I, Egas C, Nunes OC, Manaia CM (2012) Bacterial diversity from the source to the tap: a comparative study based on 16S rRNA gene-DGGE and culture-dependent methods. FEMS Microbiol Ecol 83:361–374. doi:10.1111/1574-6941.12002 CrossRefGoogle Scholar
  167. Viau E, Bibby K, Paez-Rubio T, Peccia J (2011) Toward a consensus view on the infectious risks associated with land application of sewage sludge. Environ Sci Technol 45:5459–69. doi:10.1021/es200566f CrossRefGoogle Scholar
  168. Vieno N, Tuhkanen T, Kronberg L (2007) Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Res 41:1001–12. doi:10.1016/j.watres.2006.12.017 CrossRefGoogle Scholar
  169. Wang X, Hu M, Xia Y, Wen X, Ding K (2012) Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl Environ Microbiol 78:7042–7. doi:10.1128/aem.01617-12 CrossRefGoogle Scholar
  170. WHO (2001) Pharmaceuticals in drinking-water. WHO/HSE/WSH/11.05. World Health Organization, GenevaGoogle Scholar
  171. WHO (1948) http://www.who.int. Accessed 2 Nov 2012
  172. WHO/UNICEF (2006) Meeting the MDG drinking water and sanitation target: the urban and rural challenge of the decade. World Health Organization, GenevaGoogle Scholar
  173. WISE (2007) Water Information System for Europe. http://water.europa.eu. Accessed 19 Oct 2012
  174. Xi C, Zhang Y, Marrs CF, Ye W, Foxman B, Nriagu J, Simon C (2009) Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl Environ Microb 75:5714–8. doi:10.1128/aem.00382-09 CrossRefGoogle Scholar
  175. Xia L-N, Li L, Wu C-M, Liu Y-Q, Tao X-Q, Dai L, Qi Y-H, Lu L-M, Shen J-Z (2010a) A survey of plasmid-mediated fluoroquinolone resistance genes from Escherichia coli isolates and their dissemination in Shandong, China. Foodborne Pathog Dis 7:207–15. doi:10.1089/fpd.2009.0378 CrossRefGoogle Scholar
  176. Xia S, Duan L, Song Y, Li J, Piceno YM, Andersen GL, Alvarez-Cohen L, Moreno-Andrade I, Huang C-L, Hermanowicz SW (2010b) Bacterial community structure in geographically distributed biological wastewater treatment reactors. Environ Sci Technol 44:7391–6. doi:10.1021/es101554m CrossRefGoogle Scholar
  177. Yang C, Zhang W, Liu R, Li Q, Li B, Wang S, Song C, Qiao C, Mulchandani A (2011) Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants. Environ Sci Technol 45:7408–15. doi:10.1021/es2010545 CrossRefGoogle Scholar
  178. Ye L, Zhang T (2011) Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing. Environ Sci Technol 45:7173–9. doi:10.1021/es201045e CrossRefGoogle Scholar
  179. Ye L, Zhang T (2012) Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4082-4
  180. Yergeau E, Lawrence JR, Waiser MJ, Korber DR, Greer CW (2010) Metatranscriptomic analysis of the response of river biofilms to pharmaceutical products, using anonymous DNA microarrays. Appl Environ Microb 76:5432–9. doi:10.1128/aem.00873-10 CrossRefGoogle Scholar
  181. Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PloS One 7:E38183. doi:10.1371/journal.pone.0038183 CrossRefGoogle Scholar
  182. Zhang T, Zhang X-X, Ye L (2011) Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PloS One 6:E26041. doi:10.1371/journal.pone.0026041 CrossRefGoogle Scholar
  183. Zhang T, Shao MF, Ye L (2012) 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6:1137–47. doi:10.1038/ismej.2011.188 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de BiotecnologiaUniversidade Católica Portuguesa/Porto, Rua Dr. António Bernardino de AlmeidaPortoPortugal

Personalised recommendations