Advertisement

Environmental Science and Pollution Research

, Volume 20, Issue 6, pp 3582–3591 | Cite as

Photocatalytic degradation of contaminants of concern with composite NF-TiO2 films under visible and solar light

  • H. Barndõk
  • M. Peláez
  • C. Han
  • W. E. PlattenIII
  • P. Campo
  • D. Hermosilla
  • A. Blanco
  • D. D. Dionysiou
Wastewater Reuse Applications and Contaminants of Emerging Concern (WRA & CEC 2012)

Abstract

This study reports the synthesis and characterization of composite nitrogen and fluorine co-doped titanium dioxide (NF-TiO2) for the removal of contaminants of concern in wastewater under visible and solar light. Monodisperse anatase TiO2 nanoparticles of different sizes and Evonik P25 were assembled to immobilized NF-TiO2 by direct incorporation into the sol–gel or by the layer-by-layer technique. The composite films were characterized with X-ray diffraction, high-resolution transmission electron microscopy, environmental scanning electron microscopy, and porosimetry analysis. The photocatalytic degradation of atrazine, carbamazepine, and caffeine was evaluated in a synthetic water solution and in an effluent from a hybrid biological concentrator reactor (BCR). Minor aggregation and improved distribution of monodisperse titania particles was obtained with NF-TiO2-monodisperse (10 and 50 nm) from the layer-by-layer technique than with NF-TiO2 + monodisperse TiO2 (300 nm) directly incorporated into the sol. The photocatalysts synthesized with the layer-by-layer method achieved significantly higher degradation rates in contrast with NF-TiO2-monodisperse titania (300 nm) and slightly faster values when compared with NF-TiO2-P25. Using NF-TiO2 layer-by-layer with monodisperse TiO2 (50 nm) under solar light irradiation, the respective degradation rates in synthetic water and BCR effluent were 14.6 and 9.5 × 10−3 min−1 for caffeine, 12.5 and 9.0 × 10−3 min−1 for carbamazepine, and 10.9 and 5.8 × 10−3 min−1 for atrazine. These results suggest that the layer-by-layer technique is a promising method for the synthesis of composite TiO2-based films compared to the direct addition of nanoparticles into the sol.

Keywords

NF-TiO2 Monodisperse Sol–gel method Carbamazepine Atrazine Caffeine TiO2 photocatalysis Solar Visible light Contaminants Emerging Concern Water Reuse 

Notes

Acknowledgments

This research was funded by the Cyprus Research Promotion Foundation through Desmi 2009–2010, which is co-funded by the Republic of Cyprus and the European Regional Development Fund of the EU (contract NEA IPODOMI/STRATH/0308/09); the Ministry of Science and Innovation of Spain (project “AGUA Y ENERGÍA”, CTM2008-06886-C02-01); the European Commission (project “AQUAFIT4USE”, 211534); and the Archimedes Foundation (Estonia), which is granting Helen Barndõk’s Ph.D. studies.

References

  1. Achilleos A, Hapeshi E, Xekoukoulotakis NP, Mantzavinos D, Fatta-Kassinos D (2010) UV-A and solar photodegradation of ibuprofen and carbamazepine catalyzed by TiO2. Separ Sci Technol 45(11):1564–1570. doi: 10.1080/01496395.2010.487463 CrossRefGoogle Scholar
  2. Andreozzi R, Raffaele M, Nicklas P (2003) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50(10):1319–1330. doi: 10.1016/s0045-6535(02)00769-5 CrossRefGoogle Scholar
  3. Antoniou MG, Shoemaker JA, De La Cruz AA, Dionysiou DD (2008) Unveiling new degradation intermediates/pathways from the photocatalytic degradation of microcystin-LR. Environ Sci Technol 42(23):8877–8883. doi: 10.1021/es801637z CrossRefGoogle Scholar
  4. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271. doi: 10.1126/science.1061051 CrossRefGoogle Scholar
  5. Balasubramanian G, Dionysiou DD, Suidan MT, Baudin I, Audin B, Laine JM (2004) Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water. Appl Catal B-Environ 47(2):73–84. doi: 10.1016/j.apcatb.2003.04.002 CrossRefGoogle Scholar
  6. Barndõk H, Hermosilla D, Cortijo L, Negro C, Blanco A (2012) Assessing the effect of inorganic anions on TiO2-photocatalysis and ozone oxidation treatment efficiencies. J Adv Oxid Technol 15(1):125–132Google Scholar
  7. Belgiorno V, Rizzo L, Fatta D, Della Rocca C, Lofrano G, Nikolaou A, Naddeo V, Meric S (2007) Review on endocrine disrupting-emerging compounds in urban wastewater: occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse. Desalination 215(1–3):166–176. doi: 10.1016/j.desal.2006.10.035 CrossRefGoogle Scholar
  8. Bernabeu A, Vercher RF, Santos-Juanes L, Simon PJ, Lardin C, Martinez MA, Vicente JA, Gonzalez R, Llosa C, Arques A, Amat AM (2011) Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents. Catal Today 161(1):235–240. doi: 10.1016/j.cattod.2010.09.025 CrossRefGoogle Scholar
  9. Burns RA, Crittenden JC, Hand DW, Selzer VH, Sutter LL, Salman SR (1999) Effect of inorganic ions in heterogeneous photocatalysis of TCE. J Environ Eng-Asce 125(1):77–85. doi: 10.1061/(asce)0733-9372(1999)125:1(77) CrossRefGoogle Scholar
  10. Castiglioni S, Bagnati R, Fanelli R, Pomati F, Calamari D, Zuccato E (2006) Removal of pharmaceuticals in sewage treatment plants in Italy. Environ Sci Technol 40(1):357–363. doi: 10.1021/es050991m CrossRefGoogle Scholar
  11. Chen Y, Dionysiou DD (2008) Bimodal mesoporous TiO2-P25 composite thick films with high photocatalytic activity and improved structural integrity. Appl Catal B-Environ 80(1–2):147–155. doi: 10.1016/j.apcatb.2007.11.010 CrossRefGoogle Scholar
  12. Choi H, Antoniou MG, Pelaez M, De la Cruz AA, Shoemaker JA, Dionysiou DD (2007) Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. Environ Sci Technol 41(21):7530–7535. doi: 10.1021/es0709122 CrossRefGoogle Scholar
  13. Chong MN, Jin B (2012) Photocatalytic treatment of high concentration carbamazepine in synthetic hospital wastewater. J Hazard Mater 199:135–142. doi: 10.1016/j.jhazmat.2011.10.067 CrossRefGoogle Scholar
  14. Chong MN, Jin B, Laera G, Saint CP (2011) Evaluating the photodegradation of carbamazepine in a sequential batch photoreactor system: impacts of effluent organic matter and inorganic ions. Chem Eng J 174(2–3):595–602. doi: 10.1016/j.cej.2011.09.065 CrossRefGoogle Scholar
  15. Doll TE, Frimmel FH (2004) Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials—determination of intermediates and reaction pathways. Water Res 38(4):955–964. doi: 10.1016/j.watres.2003.11.009 CrossRefGoogle Scholar
  16. EC (2008) Directive 2008/105/EC of the European Parliament and of the Council on the environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC and amending Directive 2000/60/EC. Official Journal L348:84–97Google Scholar
  17. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photoch Photobio C 1:1–21. doi: 10.1016/S1389-5567(00)00002-2 CrossRefGoogle Scholar
  18. Glassmeyer ST, Furlong ET, Kolpin DW, Cahill JD, Zaugg SD, Werner SL, Meyer MT, Kryak DD (2005) Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environ Sci Technol 39(14):5157–5169. doi: 10.1021/es048120k CrossRefGoogle Scholar
  19. Goetz V, Cambon JP, Sacco D, Plantard G (2009) Modeling aqueous heterogeneous photocatalytic degradation of organic pollutants with immobilized TiO2. Chem Eng Process 48(1):532–537. doi: 10.1016/j.cep.2008.06.013 CrossRefGoogle Scholar
  20. Han C, Luque R, Dionysiou DD (2012) Facile preparation of controllable size monodisperse anatase titania nanoparticles. Chem Commun 48(13):1860–1862. doi: 10.1039/c1cc16050h CrossRefGoogle Scholar
  21. Han C, Pelaez M, Likodimos V, Kontos AG, Falaras P, O'Shea K, Dionysiou DD (2011) Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl Catal B-Environ 107(1–2):77–87. doi: 10.1016/j.apcatb.2011.06.039 CrossRefGoogle Scholar
  22. Hincapie M, Maldonado MI, Oller I, Gernjak W, Sanchez-Perez JA, Ballesteros MM, Malato S (2005) Solar photocatalytic degradation and detoxification of EU priority substances. Catal Today 101(3–4):203–210. doi: 10.1016/j.cattod.2005.03.004 CrossRefGoogle Scholar
  23. Ho L, Grasset C, Hoefel D, Dixon MB, Leusch FDL, Newcombe G, Saint CP, Brookes JD (2011) Assessing granular media filtration for the removal of chemical contaminants from wastewater. Water Res 45(11):3461–3472. doi: 10.1016/j.watres.2011.04.005 CrossRefGoogle Scholar
  24. Joss A, Keller E, Alder AC, Gobel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39(14):3139–3152. doi: 10.1016/j.watres.2005.05.031 CrossRefGoogle Scholar
  25. Klamerth N, Miranda N, Malato S, Agueera A, Fernandez-Alba AR, Maldonado MI, Coronado JM (2009) Degradation of emerging contaminants at low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2. Catal Today 144(1–2):124–130. doi: 10.1016/j.cattod.2009.01.024 CrossRefGoogle Scholar
  26. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211. doi: 10.1021/es011055j CrossRefGoogle Scholar
  27. Laera G, Jin B, Zhu H, Lopez A (2011) Photocatalytic activity of TiO2 nanofibers in simulated and real municipal effluents. Catal Today 161(1):147–152. doi: 10.1016/j.cattod.2010.10.037 CrossRefGoogle Scholar
  28. Li K, Huang Y, Yan L, Dai Y, Xue K, Guo H, Huang Z, Xiong J (2012) Simulated sunlight photodegradation of aqueous atrazine and rhodamine B catalyzed by the ordered mesoporous graphene-titania/silica composite material. Catal Commun 18:16–20. doi: 10.1016/j.catcom.2011.11.008 CrossRefGoogle Scholar
  29. Lin YM, Tseng YH, Huang JH, Chao CC, Chen CC, Wang I (2006) Photocatalytic activity for degradation of nitrogen oxides over visible light responsive titania-based photocatalysts. Environ Sci Technol 40(5):1616–1621. doi: 10.1021/es051007p CrossRefGoogle Scholar
  30. Linsebigler AL, Lu GQ, Yates JT (1995) Photocatalysis on TiO2 surfaces—principles, mechanisms, and selected results. Chem Rev 95(3):735–758. doi: 10.1021/cr00035a013 CrossRefGoogle Scholar
  31. McMurray TA, Dunlop PSM, Byrne JA (2006) The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. J Photoch Photobio A 182(1):43–51. doi: 10.1016/j.jphotochem.2006.01.010 CrossRefGoogle Scholar
  32. Miranda-Garcia N, Suarez S, Sanchez B, Coronado JM, Malato S, Ignacio Maldonado M (2011) Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl Catal B-Environ 103(3–4):294–301. doi: 10.1016/j.apcatb.2011.01.030 CrossRefGoogle Scholar
  33. Mourao HAJL, Malagutti AR, Ribeiro C (2010) Synthesis of TiO2-coated CoFe2O4 photocatalysts applied to the photodegradation of atrazine and rhodamine B in water. Appl Catal A-Gen 382(2):284–292. doi: 10.1016/j.apcata.2010.05.007 CrossRefGoogle Scholar
  34. Parra S, Stanca SE, Guasaquillo I, Thampi KR (2004) Photocatalytic degradation of atrazine using suspended and supported TiO2. Appl Catal B-Environ 51(2):107–116. doi: 10.1016/j.apcatb.2004.01.021 CrossRefGoogle Scholar
  35. Pelaez M, de la Cruz AA, Stathatos E, Falaras P, Dionysiou DD (2009) Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water. Catal Today 144(1–2):19–25. doi: 10.1016/j.cattod.2008.12.022 CrossRefGoogle Scholar
  36. Pelaez M, Falaras P, Kontos AG, de la Cruz AA, O'Shea K, Dunlop PSM, Byrne JA, Dionysiou DD (2012a) A comparative study on the removal of cylindrospermopsin and microcystins from water with NF-TiO2-P25 composite films with visible and UV–vis light photocatalytic activity. Appl Catal B-Environ 121:30–39. doi: 10.1016/j.apcatb.2012.03.010 CrossRefGoogle Scholar
  37. Pelaez M, Falaras P, Likodimos V, Kontos AG, de la Cruz AA, Dionysiou DD (2011) Novel NF-TiO2-P25 composite photocatalyst for the removal of microcystins and cylindrospermopsin under visible and solar light. Abstr Pap Am Chem S 241 (41-IEC)Google Scholar
  38. Pelaez M, Falaras P, Likodimos V, Kontos AG, de la Cruz AA, O'Shea K, Dionysiou DD (2010) Synthesis, structural characterization and evaluation of sol–gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR. Appl Catal B-Environ 99(3–4):378–387. doi: 10.1016/j.apcatb.2010.06.017 CrossRefGoogle Scholar
  39. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'shea K, Entezari MH, Dionysiou DD (2012b) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B: Environ 125:331–349CrossRefGoogle Scholar
  40. Provata A, Falaras P, Xagas A (1998) Fractal features of titanium oxide surfaces. Chem Phys Lett 297(5–6):484–490. doi: 10.1016/s0009-2614(98)01127-0 CrossRefGoogle Scholar
  41. Rengifo-Herrera JA, Pierzchala K, Sienkiewicz A, Forro L, Kiwi J, Pulgarin C (2009) Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light. Appl Catal B-Environ 88(3–4):398–406. doi: 10.1016/j.apcatb.2008.10.025 CrossRefGoogle Scholar
  42. Rizzo L, Meric S, Guida M, Kassinos D, Belgiorno V (2009) Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res 43(16):4070–4078. doi: 10.1016/j.watres.2009.06.046 CrossRefGoogle Scholar
  43. Scott D et al (2012) Biological nitrogen and carbon removal in a gravity flow biomass concentrator reactor for municipal sewage treatment. Chemosphere. doi: 10.1016/j.chemosphere.2012.08.045
  44. Subagio DP, Srinivasan M, Lim M, Lim T-T (2010) Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor. Appl Catal B-Environ 95(3–4):414–422. doi: 10.1016/j.apcatb.2010.01.021 CrossRefGoogle Scholar
  45. USEPA (2003) Interim Reregistration Eligibility Decision for Atrazine (Report of the United States Environmental Protection Agency). USEPA, Washington Case No. 0062Google Scholar
  46. WHO (2002) WHO model list of essential medicines. World Health Organization Drug Information 16(2):139–150Google Scholar
  47. Yalap KS, Balcioglu IA (2009) Effects of inorganic anions and humic acid on the photocatalytic and ozone oxidation of oxytetracycline in aqueous solution. J Adv Oxid Technol 12(1):134–143Google Scholar
  48. Zahraa O, Sauvanaud L, Hamard G, Bouchy M (2003) Kinetics of atrazine degradation by photocatalytic process in aqueous solution. Int J Photoenergy 5(2):87–93. doi: 10.1155/s1110662x03000187 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • H. Barndõk
    • 1
  • M. Peláez
    • 2
  • C. Han
    • 2
  • W. E. PlattenIII
    • 2
  • P. Campo
    • 2
  • D. Hermosilla
    • 1
  • A. Blanco
    • 1
  • D. D. Dionysiou
    • 2
    • 3
  1. 1.Department of Chemical EngineeringComplutense University of MadridMadridSpain
  2. 2.Environmental Engineering and Science ProgramUniversity of CincinnatiCincinnatiUSA
  3. 3.Nireas-International Water Research CentreUniversity of CyprusNicosiaCyprus

Personalised recommendations