Advertisement

Environmental Science and Pollution Research

, Volume 20, Issue 8, pp 5361–5372 | Cite as

Mercury, methylmercury, and selenium in blood of bird species from Doñana National Park (Southwestern Spain) after a mining accident

  • C. Rodríguez Alvárez
  • M. Jiménez Moreno
  • L. López Alonso
  • B. Gómara
  • F. J. Guzmán Bernardo
  • R. C. Rodríguez Martín-Doimeadios
  • M. J. GonzálezEmail author
Research Article

Abstract

Total mercury (Hg), monomethylmercury (MeHg), and selenium (Se) were determined in blood of 11 bird species living in Doñana National Park (DNP, Southwestern Spain) and the surrounding area in 1999 and 2000 after a mine spill accident. The total Hg contents found varied from 1.00 to 587 ng/mL, with an MeHg percentage higher than 80 %, except in mallard species. In all the cases, the concentrations found were below the threshold of high risk for the bird populations. The parameters which most affected the accumulation of Hg and MeHg in the birds studied were, first, species, or trophic position, and second sampling area. Age does not seem to have a great influence on the content of Hg in the blood of these birds. The levels of Se found ranged from 108 to 873 ng/mL, and they were not affected by species, trophic level, age, or sampling area. The blood Hg concentrations of birds living in the area directly affected by the toxic mud, outside the park, were higher than those found in the other birds, and this could be explained by the mine spill accident happened in 1998.

Keywords

Doñana National Park Bird species Blood Mercury Selenium Acid mine spill 

Notes

Acknowledgments

The authors are grateful to Junta de Comunidades de Castilla-La Mancha (PAI06-0094, PEII09-0032-5329) and the Spanish Ministry of Science and Technology (BQU2008-02126 and BQU2007-65991) for financial support. The authors thank the staff of Estación Biológica de Doñana (CSIC), and particularly, Dr. F. Hiraldo, for providing the blood samples.

Supplementary material

11356_2013_1540_MOESM1_ESM.docx (26 kb)
ESM 1 (DOCX 26 kb)

References

  1. Alastuey A, Garcia-Sanchez A, Lopez A, Querol X (1999) Evolution of pyrite mud weathering and mobility of heavy metals in the Guadiamar valley after Aznalcollar spill, shouth-west Spain. Sci Total Environ Toxicol Chem 21:41–55. doi: 10.1016/S0048-9697(99)00372-7 CrossRefGoogle Scholar
  2. Anthony RG, Garret MG, Schuler CA (1993) Environmental contaminants in bald eagle in Columbia River estuary. J Wild Manag 57:10–19CrossRefGoogle Scholar
  3. Bearhop S, Ruxton GD, Furness RW (2000) Dynamics of mercury in blood and feathers of great skuas. Environ Toxicol Chem 19:1638–1643CrossRefGoogle Scholar
  4. Becker PH, Furness RW, Henning D (1993) The value of chick feathers to assess spatial and interspecific variation in the mercury contamination of seabirds. Environ Monitor Asses 28:255–262. doi: 10.1007/BF00545769 CrossRefGoogle Scholar
  5. Benito V, Devesa V, Muñoz O, Suñer MA, Montoro R, Baos R, Hiraldo F, Fernández M, González MJ (1999) Trace elements in blood collected from birds feeding in the area around Doñana National Park affected by the toxic spill from Aznalcóllar mine. Sci Total Environ 242:309–323. doi: 10.1016/S0048-9697(99)00398-8 CrossRefGoogle Scholar
  6. Bennet RS, French JB, Rossmann R, Haebler R (2009) Dietary toxicity and tissue accumulation of methylmercury in American Kestrels. Arch Environ Contam Toxicol 56:149–156CrossRefGoogle Scholar
  7. Berzas Nevado JJ, Rodríguez Martín-Doimeadios RC, Krupp E, Guzmán Bernardo FJ, Rodríguez Fariñas N, Jiménez Moreno M, Wallace D, Patiño Ropero MJ (2011) Comparison of gas chromatographic hyphenated techniques for mercury speciation analysis. J Chromatogr A 1218:4545–4551. doi: 10.1016/j.chroma.2011.05.036 CrossRefGoogle Scholar
  8. Bischoff K, Pichner J, Braselton WE, Counard C, Evers DC, Edwards WC (2002) Mercury and selenium concentrations in liver and eggs of common loons (Gavia immer) from Minesota. Arch Environ Contam Toxicol 42:71–76. doi: 10.1007/s002440010293 CrossRefGoogle Scholar
  9. Bryan GW (1979) Bioaccumulation of marine pollutants. Phil Trans Roy Soc London B 286:483–505CrossRefGoogle Scholar
  10. Burger J, Gochfeld M (1997) Age differences in metals in the blood of Herring (Larus argentatus) and Franklin’s (Larus pipixcan) gulls. Arch Environ Contam Toxicol 33:436–440. doi: 10.1007/s002449900274 CrossRefGoogle Scholar
  11. Burger J, Gochfeld M (2000) Metal levels in feathers of 12 species of seabirds from Midway Atoll in the northern Pacific Ocean. Sci Total Environ 257:37–52. doi: 10.1016/S0048-9697(00)00496-4 CrossRefGoogle Scholar
  12. Burger J (2002) Food Chain differences affect heavy metals in bird eggs in Bernegat bay, New Jersey. Environ Res 90:33–39. doi: 10.1006/enrs.2002.4381 CrossRefGoogle Scholar
  13. Burger J, Gochfeld M, Jeitner C, Snigaroff D, Snigaroff R, Stamm T, Volz C (2008) Assessment of metals in down feathers of female common eiders and their eggs from the Aleutians: arsenic, cadmium, chromium, lead, manganese, mercury and selenium. Environ Monit Assess 143:247–256. doi: 10.1007/s10661-007-9973-y CrossRefGoogle Scholar
  14. Caldwell CA, Arnold MA, Gould WR (1999) Mercury distribution in blood, tissues and feathers of double-crested cormorant nestlings from arid-land reservoirs in south central New Mexico. Arch Environ Contam Toxicol 36:456–461. doi: 10.1007/PL00006618 CrossRefGoogle Scholar
  15. Carvalho CML, Chew EH, Hashemy SI, Lu J, Holmgren A (2008) Inhibition of the human thioredoxin system. J Biol Chem 283:11913–11923. doi: 10.1074/jbc.M710133200 CrossRefGoogle Scholar
  16. Conover MR, Vest JL (2009) Concentrations of selenium and mercury in eared grebes (Podiceps nigricollis) from Utah’s Great Salt lake, USA. Environ Toxicol Chem 28:1319–1323. doi: 10.1897/08-494.1 CrossRefGoogle Scholar
  17. Cramp S, Simmons KEL (1978) Handbook of the birds of Europe the middle east and North Africa. The birds of the western Palearctic. Volume 1. Ostrich to ducks. Oxford University Press, OxfordGoogle Scholar
  18. Cramp S, Simmons KEL (1980) Handbook of the birds of Europe the middle east and North Africa. The birds of the western Palearctic. Volume 2. Hawks to bustards. Oxford University Press, OxfordGoogle Scholar
  19. Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320:335. doi: 10.1126/science1154082 CrossRefGoogle Scholar
  20. Cuvin-Aralar MLA, Furness RW (1991) Mercury and selenium: a review. Ecotox Environ Safe 21:348–364CrossRefGoogle Scholar
  21. Dauwe M, Bevoets L, Blust R, Pinxten R, Ense R (2000) Can excrement and feather of nestling song-birds be used as biomonitors for heavy metal pollution? Arch Environ Contam Toxicol 39:541–546CrossRefGoogle Scholar
  22. DesGranges JL, Rodrigue J, Laperle M (1998) Mercury accumulation and biomagnifications in ospreys (Pandion haliaetus) in the James bay and Hudson bay regions of Québec. Arch Environ Contam Toxicol 35:330–341CrossRefGoogle Scholar
  23. Dobson AJ (1983) Introduction to statistical modelling. Chapman and Hall, LondonGoogle Scholar
  24. Eagles-Smith CA, Ackerman JT, Adelsbach TL, Takekawa JY, Miles AK, Keister RA (2008) Mercury correlations among six tissues for four waterbird species breeding in San Francisco Bay, California, USA. Environ Toxicol Chem 27:2136–2153. doi: 10.1897/08-038.1 CrossRefGoogle Scholar
  25. Evers DC, Taylor K, Major A, Taylor RJ, Poppenga RH, Scheuhammer AM (2003) Common loons eggs as indicators of methylmercury availability in North America. Ecotoxicology 12:69–81. doi: 10.1023/A:1022593030009 CrossRefGoogle Scholar
  26. Evers DC, Burgess NM, Champoux L, Hoskins B, Major A, Goodale WM, Taylor RJ, Poppenga R, Daigle T (2005) Patterns and interpretation of mercury exposure in freshwater avian communities in Northeastern North America. Ecotoxicology 14:193–221CrossRefGoogle Scholar
  27. Evers DC, Savoy LJ, DeSorbo CR, Yates DE, Hanson W, Taylor KM, Siegel LS, Cooley JH Jr, Bank MS, Major A, Munney K, Mower BF, Vogel HS, Schoch N, Pokras M, Goodale MW, Fair J (2008) Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology 17:69–81. doi: 10.1007/s10646-007-0168-7 CrossRefGoogle Scholar
  28. Fernández-Aceytuno MC, Rico MC, González MJ, Hernández LM, Baluja G (1984) Contaminación organoclorada y metálica en organismos acuáticos del Parque Nacional de Doñana. Agroquim Tecnol Alim 24:221–232Google Scholar
  29. Franson JC, Schmutz JA, Creekmore LH, Fowler AC (1999) Concentrations of selenium, mercury, and lead in blood of emperor geese in western Alaska. Environ Toxicol Chem 18:965–969CrossRefGoogle Scholar
  30. Franson JC, Hoffman DJ, Schmutz JA (2002) Blood selenium concentrations and enzyme activities related to glutathione metabolism in wild emperor geese. Environ Toxicol Chem 21:2179–2184CrossRefGoogle Scholar
  31. Furness RW, Muirhead SJ, Woodburn M (1986) Using bird feathers to measure mercury in the environment: relationships between mercury content and molt. Mar Pollut Bull 17:27–30CrossRefGoogle Scholar
  32. Gochfeld M (1980) Tissue distribution of mercury in normal and abnormal young common terns. Mar Pollut Bull 11:362–377. doi: 10.1016/0025-326X(80)90284-2 CrossRefGoogle Scholar
  33. González MJ, Clavero MR, Hernández LM, Baluja G (1983) Transferencia y bioacumulación de mercurio y metil mercurio en ecosistemas del parque Nacional de Doñana. Doñana Acta Vertebrata 10:191–202Google Scholar
  34. González MJ, Hernández LM, Hernán MA, Baluja G (1985) Multivariate analysis of water contamination by heavy metals at Doñana National Park. Bull Environ Contam Toxicol 35:266–271CrossRefGoogle Scholar
  35. González MJ, Fernández M, Hernández LM (1990) Influence of acid mine water in the distribution of heavy metals in soils of Doñana National Park. Application of multivariate analysis. Environ Technol 11:1027–1038CrossRefGoogle Scholar
  36. Grand JB, Franson JC, Flint PL, Petersen MR (2002) Concentrations of trace elements in eggs and blood of spectacled and common eiders on the Yukon-Kuskokwim Delta, Alaska, USA. Environ Toxicol Chem 21:1673–1678Google Scholar
  37. Grimalt JO, Ferrer M, Macpherson E (1999) The mine tailing accident in Aznalcóllar. Sci Total Environ 242:3–11. doi: 10.1016/S0048-9697(99)00372-1 CrossRefGoogle Scholar
  38. Heinz GH (1980) Comparison of game-farm and wild-reared mallar ducks in accumulation of methyl mercury. J Environ Pathol Toxicol 3:379–386Google Scholar
  39. Heinz GH, Pendleton GW, Krynithsky AJ, Gold LG (1990) Selenium accumulation and elimination in mallards. Arch Environ Contam Toxicol 19:374–379. doi: 10.1007/BF01054981 CrossRefGoogle Scholar
  40. Heinz GH (1996) Selenium in birds. In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental contaminants in wildlife: interpreting tissue concentrations. Lewis Publishers, Boca Raton, pp 447–558Google Scholar
  41. Henny CJ, Hill EF, Hoffman DJ, Spalding MG, Grove RA (2002) Nineteenth century mercury: hazard to wading birds and cormorants of the Carson River, Nevada. Ecotoxicology 11:213–231. doi: 10.1023/A:1016327602656 CrossRefGoogle Scholar
  42. Hernández LM, González MJ, Rico MC, Baluja G (1982) Contaminación xenobiótica del Parque Nacional de Doñana I. Residuos de insecticidas organoclorados, bifenilos policlorados y mercurio en anseriformes y gruiformes. Doñana Acta Vertebrata 9:161–175Google Scholar
  43. Hernández LM, González MJ, Rico MC, Baluja G (1984) Contaminación xenobiótica del Parque Nacional de Doñana.III. Residuos de insecticidas organoclorados, bifenilos policlorados y metales pesados en ciconiformes. Doñana Acta Vertebrata 11:197–212Google Scholar
  44. Hernández LM, Rico MC, González MJ, Montero MC, Fernández MA (1987) Residues of organochlorine chemicals and concentrations of heavy metals in ciconiforme eggs in relation to diet and habitat. J Environ Sci Health B 22:245–258CrossRefGoogle Scholar
  45. Hernández LM, Rico MC, Fernández MA, González MJ (1988) Organochlorine and heavy metal residues in falconiformes and ciconiforme eggs (Spain). Bull Environ Contam Toxicol 40:86–93CrossRefGoogle Scholar
  46. Hernández LM, Gómara B, Fernández MA, Jiménez B, González MJ, Baos R, Hiraldo F, Ferrer M, Benito V, Suñer MA, Devesa V, Muñoz O, Montoro R (1999) Accumulation of heavy metals and As in wetlands birds in the area around Doñana National Park affected by the Aznalcóllar toxic spill. Sci Total Environ 1(242):293–308. doi: 10.1016/S0048-9697(99)00397-6 CrossRefGoogle Scholar
  47. Honda K, Nasu T, Tatsukawa R (1986) Sesonal changes in mercury accumulation in the black-eared kite, Milvus migrans lineastus. Environ Pollut 42:324–334Google Scholar
  48. Ikemoto T, Kunito T, Tanabe S, Tsurumi M, Sato F, Oka N (2005) Non-desctructive monitoring of trace element levels in short-tailed albatrosses (Phoebastria albatrus) and black-footed albatrosses (Phoebastria nigripes) from Torishima Island, Japan using eggs and blood. Mar Pollut Bull 51:889–895. doi: 10.1016/j.marpolbul.2005.06.003 CrossRefGoogle Scholar
  49. Kahle S, Becker PH (1999) Bird blood as bioindicator for mercury in the environment. Chemosphere 39:2451–2457. doi: 10.1016/S0045-6535(99)00154-X CrossRefGoogle Scholar
  50. Kenow KP, Meyer MW, Hines RK, Karasov WH (2007) Distribution and accumulation of mercury in tissues of captive-reared common loon (Gavia immer) chicks. Environ Toxicol Chem 26:1047–1055. doi: 10.1897/06-193R.1 CrossRefGoogle Scholar
  51. Kim EY, Saeki K, Tanabe S, Tanaka H, Tatsukawa R (1996a) Specific accumulation of mercury and selenium in seabirds. Environ Pollut 94:261–265. doi: 10.1016/S0269-7491(96)00110-8 CrossRefGoogle Scholar
  52. Kim EY, Murakami T, Saeki K, Tatsukawa R (1996b) Mercury levels and its chemicals form in tissues and organs of seabirds. Arch Environ Contam Toxicol 30:259–266. doi: 10.1007/s002449900035 CrossRefGoogle Scholar
  53. Lewis SA, Becker PH, Furness RW (1993) Mercury levels in eggs, tissues, and feathers of herring gulls (Larus argentatus) from the German Wadden sea coast. Environ Pollut 80:293–299CrossRefGoogle Scholar
  54. Lopez-Colon JL, Veiga D, Montel A, de Pradena JM, Lozano L (2001) Determination of Mercury in Blood by Cold Vapor Atomic Spectrometry. Atom Spectrosc 22:284–289Google Scholar
  55. Lopez-Pamo E, Barettino D, Antón-Pacheco C, Ortiz G, Arránz JC, Gumiel JC, Martínez-Pledel B, Aparicio M, Montouto O (1999) The extent of the Aznalcóllar pyritic sludge spill and its effects on soils. Sci Total Environ 242:57–88. doi: 10.1016/S0048-9697(99)00376-9 CrossRefGoogle Scholar
  56. Mason RP, Benoit J (2003) Organomercury compounds in the environment. In: Craig PJ (ed) Organometallic compounds in the environment, 2nd edn. John Willey & Sons Ltd, Chichester, pp 57–99CrossRefGoogle Scholar
  57. McCullagh P, Nelder JA (1983) Generaled linear modelling. Chapman and Hall, LondonGoogle Scholar
  58. Meyer MW, Evers DC, Hartigan JJ, Rasmussen PS (1998) Patterns of common loon (Gavia immer) mercury exposure, reproduction and survival in Wisconsin, USA. Environ Toxicol Chem 17:184–190. doi: 1897/1551-5028(1998)017<0184:POCLGI>2.3.CO;2 Google Scholar
  59. Morales E, Figueroa JM, Montaño S, Perez A, Pablo E, Padro O (2010) Densidad de la sangre en pollos de engorda con y sin síndrome ascítico. Sociedades Rurales Producción y Medio Ambiente 10:69–73Google Scholar
  60. Muirhead SJ, Furness RW (1988) Heavy metal concentrations in the tissues of seabirds from Gough Island, South Atlantic Ocean. Mar Pollut Bull 19:278–283CrossRefGoogle Scholar
  61. Ohlendorf HM, Hothem RL, Welsh D (1989) Nest success, cause-specific nest failure, and hatchability of aquatic birds at selenium-contaminated Kesterson Reservoir and reference site. Condor 91:787–796CrossRefGoogle Scholar
  62. Ohlendorf HM (2003) Ecotoxicology of selenium. In: Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr (eds) Handbook of ecotoxicology. Lewis, USA, pp 465–500Google Scholar
  63. Ralston NVC, Ralston CR, Blackwell JL III, Raymond LJ (2008) Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology 29:802–811. doi: 10.1016/j.neuro.2008.07.007 CrossRefGoogle Scholar
  64. Ralston NVC, Raymond LJ (2010) Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 278:112–123. doi: 10.1016/j.tox.2010.06.004 CrossRefGoogle Scholar
  65. Rico MC, González MJ, Hernández LM (1989) Water contamination by heavy metals (Hg, Cd, Pb, Cu, Zn) in Doñana National Park (Spain). Bull Environ Contam Toxicol 42:582–588CrossRefGoogle Scholar
  66. Rimmer CC, McFarland KP, Evers DC, Miller EK, Aubry Y, Busby D, Taylor RJ (2005) Mercury concentration in Bicknell’s thrush and other insectivorous passerines in Montane forests of northeastern North America. Ecotoxicology 14:223–240. doi: 10.1007/s10646-004-6270-1 CrossRefGoogle Scholar
  67. Rodrigues JL, Rodríguez Álvarez C, Rodríguez Fariñas N, Berzas Nevado JJ, JrF B, Rodríguez Martín-Doimeadios RC (2011) Mercury speciation in whole blood by gas chromatography coupled to ICP-MS with a fast microwave-assisted sample preparation procedure. J Anal At Spectrom 26:436–442. doi: 10.1039/c004931j CrossRefGoogle Scholar
  68. Saeki K, Okabe Y, Kim E-Y, Tanabe S, Fukuda M, Tatsukawa R (2000) Mercury and cadmium in common cormorants (Phalacrocorax carbo). Environ Pollut 108:249–255. doi: 10.1016/S0269-7491(99)00181-5 CrossRefGoogle Scholar
  69. Scheuhammer AM, Atchison CM, Wong AHK, Evers DC (1998a) Mercury exposure in breeding common loons (Gavia immer) in central Ontario, Canada. Environ Toxicol Chem 17:191–196. doi: 10.1897/1551-5028(1998)017<0191:MEIBCL>2.3.CO;2 Google Scholar
  70. Scheuhammer AM, Wong AHK, Bond D (1998b) Mercury and Selenium accumulation in common loons (Gavia immer) and common mergansers (Mergus mergansers) from eastern Canada. Environ Toxicol Chem 17:197–201. doi: 10.1007/s10646-011-0754-6 Google Scholar
  71. Scheuhammer AM, Meyer MW, Sandheinrich MN, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals and fish. Ambio 36:12–19. doi: 10.1579/0044-7447(2007)36[12:EOEMOT]2.0.CO;2 CrossRefGoogle Scholar
  72. Scheuhammer AM, Basu N, Burgess NM, Elliot JT, Campbell GD, Wayland M, Champoux L, Rodriguez J (2008) Relationships among mercury, selenium and neurochemical parameters in common loons (Gavia immer) and bald eagles (Haliaeetus leucocephalus). Ecotoxicology 17:197–201. doi: 10.1007/s10646-007-0170-0 Google Scholar
  73. Spallholz JE, Hoffman DJ (2002) Selenium toxicity: cause and effects in aquatic birds. Aquat Toxicol 57:27–37. doi: 10.1016/S0166-445X(01)00268-5 CrossRefGoogle Scholar
  74. Thompson DR, Dowding JE (1999) Site–Specific heavy metal concentrations in blood of south island pied oystercatchers (Haematopus ostralegus finschi) from the Auckland region, New Zealand. Mar Poll Bull 38:202–206. doi: 10.1016/S0025-326X(98)00169-6 CrossRefGoogle Scholar
  75. Tsipoura N, Burger J, Feltes R, Yacabucci J, Mizrahi D, Jeitner C, Gochfeld M (2008) Metal concentrations in three species of passerine birds breeding in the Hackensack Meadowlands of New Jersey. Environ Research 107:218–228. doi: 10.1016/j.envres.2007.11.003 CrossRefGoogle Scholar
  76. Unite States Department of the Interior (1998) Guidelines for interpretation of the biological effects of selected constituents in biota, water, and sediment. National irrigation water quality program information report no. 3. November,1998Google Scholar
  77. Wayland M, García-Fernández AJ, Neugebauer E, Gilchrist HG (2001) Concentrations of Cadmium, Mercury and Selenium in blood, liver and kidney of common eider ducks from the Canadian Arctic. Environ Monitor Assess 71:255–267. doi: 10.1023/A:1011850000360 CrossRefGoogle Scholar
  78. Wiener JC, Krabbenhoft DP, Heinz GH, Scheuhammer AM (2002) Ecotoxicology of mercury. In: Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr (eds) Handbook of ecotoxicology, 2nd edn. Lewis, USA, pp 409–363Google Scholar
  79. Wilson HM, Petersen MR, Troy D (2004) Concentrations of metals and trace elements in blood of spectacled and king eiders in northern Alaska, USA. Environ Toxicol Chem 23:408–414. doi: 10.1897/03-21 CrossRefGoogle Scholar
  80. Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160. doi: 10.1897/1551-5028(1998)017<0146:EOMOWA>2.3.CO;2 CrossRefGoogle Scholar
  81. Wood PB, White JH, Steffer A, Wood JM, Facemire CF, Percival HF (1996) Mercury concentrations in tissues of Florida bald eagles. J Wildl Manag 60:178–185CrossRefGoogle Scholar
  82. Yang DY, Chen YW, Gunn JM, Belzile N (2008) Selenium and mercury in organisms: interactions and mechanisms. Environ Reviews 16:71–92. doi: 10.1139/A08-001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Rodríguez Alvárez
    • 1
  • M. Jiménez Moreno
    • 1
  • L. López Alonso
    • 2
  • B. Gómara
    • 2
  • F. J. Guzmán Bernardo
    • 1
  • R. C. Rodríguez Martín-Doimeadios
    • 1
  • M. J. González
    • 2
    Email author
  1. 1.Faculty of Environmental Sciences and BiochemistryUniversity of Castilla-La Mancha (UCLM)ToledoSpain
  2. 2.Department of Instrumental Analysis and Environmental ChemistryInstitute of General Organic Chemistry (IQOG-CSIC)MadridSpain

Personalised recommendations