Environmental Science and Pollution Research

, Volume 20, Issue 5, pp 2705–2720 | Cite as

Characterization of endocrine disruptors from a complex matrix using estrogen receptor affinity columns and high performance liquid chromatography–high resolution mass spectrometry

  • Adeline Jondeau-Cabaton
  • Amélie Soucasse
  • Emilien L. Jamin
  • Nicolas Creusot
  • Marina Grimaldi
  • Isabelle Jouanin
  • Sélim Aït-Aïssa
  • Patrick Balaguer
  • Laurent Debrauwer
  • Daniel ZalkoEmail author
Ecotoxicology and Environmental Toxicology : new concepts, new tools


Complex mixtures of contaminants with potential adverse effects on human health and wildlife are found in the environment and in the food chain. These mixtures include numerous anthropogenic compounds of various origins and structures, which may behave as endocrine disruptors. Mixture’s complexity is further enhanced by biotic and abiotic transformations. It is therefore necessary to develop new strategies allowing the identification of the structure of known, as well as unknown, nuclear receptor (NR) ligands present in complex matrices. We explored the possibility to use NR-based affinity columns to characterize the presence of bioactive molecules in environmental complex mixtures. Estrogen receptor α (ERα)-based affinity columns were used to trap and purify estrogenic substances present in surface sediment samples collected in a French river under mixed anthropogenic pressure. We combined biological, biochemical and analytical approaches to characterize the structure of ligands retained on columns and demonstrate the presence of known active molecules such as bisphenol A and octylphenol, but also of unexpected ERα ligands (n-butylparaben, hydroxyl-methyl-benzofuranone). High resolution mass spectrometry results demonstrate that ERα affinity columns can be used for the isolation, purification and identification of known as well as unknown estrogenic contaminants present in complex matrices.


Environmental pollutants Fresh water sediment Nuclear receptor Endocrine disruptor 



The research was supported by the «Ministère de l'Environnement, du Développement Durable et de la Mer» (MEDDM), « ECOPI » project, Grant P189. The authors want to thank Dr M. Tremblay-Franco for her help regarding statistical analyses and the reviewers for improving the quality of this manuscript.


  1. Aerni HR, Kobler B, Rutishauser BV, Wettstein FE, Fischer R, Giger W, Hungerbuhler A, Marazuela MD, Peter A, Schonenberger R, Vogeli AC, Suter MJ, Eggen RI (2004) Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents. Anal Bioanal Chem 378:688–696CrossRefGoogle Scholar
  2. Akingbemi BT, Sottas CM, Koulova AI, Klinefelter GR, Hardy MP (2004) Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology 145:592–603CrossRefGoogle Scholar
  3. Alonso-Magdalena P, Ropero AB, Soriano S, Garcia-Arevalo M, Ripoll C, Fuentes E, Quesada I, Nadal A (2012) Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Mol Cell Endocrinol 355:201–207CrossRefGoogle Scholar
  4. Balaguer P, Francois F, Comunale F, Fenet H, Boussioux AM, Pons M, Nicolas JC, Casellas C (1999) Reporter cell lines to study the estrogenic effects of xenoestrogens. Sci Total Environ 233:47–56CrossRefGoogle Scholar
  5. Balaguer P, Boussioux AM, Demirpence E, Nicolas JC (2001) Reporter cell lines are useful tools for monitoring biological activity of nuclear receptor ligands. Luminescence 16:153–158CrossRefGoogle Scholar
  6. Bateman KP, Kellmann M, Muenster H, Papp R, Taylor L (2009) Quantitative-qualitative data acquisition using a benchtop Orbitrap mass spectrometer. J Am Soc Mass Spectrom 20:1441–1450CrossRefGoogle Scholar
  7. Bernhard M, Muller J, Knepper TP (2006) Biodegradation of persistent polar pollutants in wastewater: comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment. Water Res 40:3419–3428CrossRefGoogle Scholar
  8. Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, Tong W, Shi L, Perkins R, Sheehan DM (2000) The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci 54:138–153CrossRefGoogle Scholar
  9. Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377:397–407CrossRefGoogle Scholar
  10. Byford JR, Shaw LE, Drew MG, Pope GS, Sauer MJ, Darbre PD (2002) Oestrogenic activity of parabens in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol 80:49–60CrossRefGoogle Scholar
  11. Celiz MD, Tso J, Aga DS (2009) Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ Toxicol Chem 28:2473–2484CrossRefGoogle Scholar
  12. Colborn T (1995) Pesticides—how research has succeeded and failed to translate science into policy: endocrinological effects on wildlife. Environ Health Perspect 103(Suppl 6):81–85CrossRefGoogle Scholar
  13. Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384CrossRefGoogle Scholar
  14. Creusot N, Budzinski H, Balaguer P, Kinani S, Porcher JM, Aït-Aïssa S (2013) Effect-directed analysis of endocrine disrupting compounds in multi-contaminated sediment: identification of novel ligands of estrogen and pregnane X receptors. Anal Bioanal Chem. doi: 10.1007/s00216-013-6708-5 (in press)
  15. Creusot N, Kinani S, Balaguer P, Tapie N, LeMenach K, Maillot-Marechal E, Porcher JM, Budzinski H, Ait-Aissa S (2010) Evaluation of an hPXR reporter gene assay for the detection of aquatic emerging pollutants: screening of chemicals and application to water samples. Anal Bioanal Chem 396:569–583CrossRefGoogle Scholar
  16. Dagnino S, Gomez E, Picot B, Cavailles V, Casellas C, Balaguer P, Fenet H (2012) Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants. Sci Total Environ 408:2608–2615CrossRefGoogle Scholar
  17. Darbre PD, Aljarrah A, Miller WR, Coldham NG, Sauer MJ, Pope GS (2004) Concentrations of parabens in human breast tumours. J Appl Toxicol 24:5–13CrossRefGoogle Scholar
  18. Datta S, Loyo-Rosales JE, Rice CP (2002) A simple method for the determination of trace levels of alkylphenolic compounds in fish tissue using pressurized fluid extraction, solid phase cleanup, and high-performance liquid chromatography fluorescence detection. J Agric Food Chem 50:1350–1354CrossRefGoogle Scholar
  19. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30:293–342CrossRefGoogle Scholar
  20. Eggen RI, Segner H (2003) The potential of mechanism-based bioanalytical tools in ecotoxicological exposure and effect assessment. Anal Bioanal Chem 377:386–396CrossRefGoogle Scholar
  21. Elder RL (1984) The cosmetic ingredient review—a safety evaluation program. J Am Acad Dermatol 11:1168–1174CrossRefGoogle Scholar
  22. Gomez E, Pillon A, Fenet H, Rosain D, Duchesne MJ, Nicolas JC, Balaguer P, Casellas C (2005) Estrogenic activity of cosmetic components in reporter cell lines: parabens, UV screens, and musks. J Toxicol Environ Health A 68:239–251CrossRefGoogle Scholar
  23. Hájková K, Pulkrabová J, Schůrek J, Hajšlová J, Poustka J, Nápravníková M, Kocourek V (2007) Novel approaches to the analysis of steroid estrogens in river sediments. Anal Bioanal Chem 387:1351–1363CrossRefGoogle Scholar
  24. Hemming JM, Waller WT, Chow MC, Denslow ND, Venables B (2001) Assessment of the estrogenicity and toxicity of a domestic wastewater effluent flowing through a constructed wetland system using biomarkers in male fathead minnows (Pimephales promelas rafinesque, 1820). Environ Toxicol Chem 20:2268–2275Google Scholar
  25. Hernandez F, Sancho JV, Pozo OJ (2005) Critical review of the application of liquid chromatography/mass spectrometry to the determination of pesticide residues in biological samples. Anal Bioanal Chem 382:934–946CrossRefGoogle Scholar
  26. Houtman CJ, Leonards PE, Kapiteijn W, Bakker JF, Brouwer A, Lamoree MH, Legler J, Klamer HJ (2007) Sample preparation method for the ER-CALUX bioassay screening of (xeno-)estrogenic activity in sediment extracts. Sci Total Environ 386:134–144CrossRefGoogle Scholar
  27. Jobling S, Beresford N, Nolan M, Rodgers-Gray T, Brighty GC, Sumpter JP, Tyler CR (2002) Altered sexual maturation and gamete production in wild roach (Rutilus rutilus) living in rivers that receive treated sewage effluents. Biol Reprod 66:272–281CrossRefGoogle Scholar
  28. Jouannet P, Wang C, Eustache F, Kold-Jensen T, Auger J (2001) Semen quality and male reproductive health: the controversy about human sperm concentration decline. APMIS 109:333–344CrossRefGoogle Scholar
  29. Kaufmann A, Butcher P, Maden K, Walker S, Widmer M (2010) Comprehensive comparison of liquid chromatography selectivity as provided by two types of liquid chromatography detectors (high resolution mass spectrometry and tandem mass spectrometry): “where is the crossover point?”. Anal Chim Acta 673:60–72CrossRefGoogle Scholar
  30. Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J (2009) Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry. Environ Sci Technol 43:7039–7046CrossRefGoogle Scholar
  31. Kinani S, Bouchonnet S, Bourcier S, Creusot N, Porcher JM, Ait-Aissa S (2008) Extraction and purification procedures for simultaneous quantification of phenolic xenoestrogens and steroid estrogens in river sediment by gas chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom 22:3651–3661CrossRefGoogle Scholar
  32. Kinani S, Bouchonnet S, Creusot N, Bourcier S, Balaguer P, Porcher JM, Ait-Aissa S (2010) Bioanalytical characterisation of multiple endocrine- and dioxin-like activities in sediments from reference and impacted small rivers. Environ Pollut 158:74–83CrossRefGoogle Scholar
  33. Kind T, Fiehn O (2010) Advances in structure elucidation of small molecules using mass spectrometry. Bioanal Rev 2:23–60CrossRefGoogle Scholar
  34. Koh CH, Khim JS, Villeneuve DL, Kannan K, Giesy JP (2006) Characterization of trace organic contaminants in marine sediment from Yeongil Bay, Korea: 1. Instrumental analyses. Environ Pollut 142:39–47CrossRefGoogle Scholar
  35. Kosjek T, Heath E, Kompare B (2007) Removal of pharmaceutical residues in a pilot wastewater treatment plant. Anal Bioanal Chem 387:1379–1387CrossRefGoogle Scholar
  36. Krauss M, Singer H, Hollender J (2010) LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem 397:943–951CrossRefGoogle Scholar
  37. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252–4263CrossRefGoogle Scholar
  38. Lemaire G, Mnif W, Pascussi JM, Pillon A, Rabenoelina F, Fenet H, Gomez E, Casellas C, Nicolas JC, Cavailles V, Duchesne MJ, Balaguer P (2006) Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system. Toxicol Sci 91:501–509CrossRefGoogle Scholar
  39. Liao W, Draper WM, Perera SK (2008) Identification of unknowns in atmospheric pressure ionization mass spectrometry using a mass to structure search engine. Anal Chem 80:7765–7777CrossRefGoogle Scholar
  40. Lim HK, Chen J, Sensenhauser C, Cook K, Subrahmanyam V (2007) Metabolite identification by data-dependent accurate mass spectrometric analysis at resolving power of 60,000 in external calibration mode using an LTQ/Orbitrap. Rapid Commun Mass Spectrom 21:1821–1832CrossRefGoogle Scholar
  41. Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006a) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem 78:2113–2120CrossRefGoogle Scholar
  42. Makarov A, Denisov E, Lange O, Horning S (2006b) Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J Am Soc Mass Spectrom 17:977–982CrossRefGoogle Scholar
  43. Mueller GC, Kim UH (1978) Displacement of estradiol from estrogen receptors by simple alkyl phenols. Endocrinology 102:1429–1435CrossRefGoogle Scholar
  44. Murray TJ, Maffini MV, Ucci AA, Sonnenschein C, Soto AM (2007) Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reprod Toxicol 23:383–390CrossRefGoogle Scholar
  45. Nimrod AC, Benson WH (1996) Environmental estrogenic effects of alkylphenol ethoxylates. Crit Rev Toxicol 26:335–364CrossRefGoogle Scholar
  46. Okubo T, Yokoyama Y, Kano K, Kano I (2001) ER-dependent estrogenic activity of parabens assessed by proliferation of human breast cancer MCF-7 cells and expression of ERalpha and PR. Food Chem Toxicol 39:1225–1232CrossRefGoogle Scholar
  47. Peethambaram PP, Ingle JN, Suman VJ, Hartmann LC, Loprinzi CL (1999) Randomized trial of diethylstilbestrol vs. tamoxifen in postmenopausal women with metastatic breast cancer. An updated analysis. Breast Cancer Res Treat 54:117–122CrossRefGoogle Scholar
  48. Perez P, Pulgar R, Olea-Serrano F, Villalobos M, Rivas A, Metzler M, Pedraza V, Olea N (1998) The estrogenicity of bisphenol A-related diphenylalkanes with various substituents at the central carbon and the hydroxy groups. Environ Health Perspect 106:167–174CrossRefGoogle Scholar
  49. Petrovic M, Barcelo D (2006) Application of liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS) in the environmental analysis. J Mass Spectrom 41:1259–1267CrossRefGoogle Scholar
  50. Pillon A, Boussioux AM, Escande A, Ait-Aissa S, Gomez E, Fenet H, Ruff M, Moras D, Vignon F, Duchesne MJ, Casellas C, Nicolas JC, Balaguer P (2005) Binding of estrogenic compounds to recombinant estrogen receptor-alpha: application to environmental analysis. Environ Health Perspect 113:278–284CrossRefGoogle Scholar
  51. Rastogi SC, Schouten A, de Kruijf N, Weijland JW (1995) Contents of methyl-, ethyl-, propyl-, butyl- and benzylparaben in cosmetic products. Contact Dermatitis 32:28–30CrossRefGoogle Scholar
  52. Riu A, Balaguer P, Perdu E, Pandelova M, Piccinelli R, Gustafsson JA, Leclercq C, Schramm KW, Dagnino S, Debrauwer L, Cravedi JP, Zalko D (2008) Characterisation of bioactive compounds in infant formulas using immobilised recombinant estrogen receptor-alpha affinity columns. Food Chem Toxicol 46:3268–3278CrossRefGoogle Scholar
  53. Routledge EJ, Sumpter JP (1997) Structural features of alkylphenolic chemicals associated with estrogenic activity. J Biol Chem 272:3280–3288CrossRefGoogle Scholar
  54. Routledge EJ, Parker J, Odum J, Ashby J, Sumpter JP (1998) Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicol Appl Pharmacol 153:12–19CrossRefGoogle Scholar
  55. Seifert M, Brenner-Weiss G, Haindl S, Nusser M, Obst U, Hock B (1999) A new concept for the bioeffects-related analysis of xenoestrogens: hyphenation of receptor assays with LC-MS. Fresenius J Anal Chem 363:767–770CrossRefGoogle Scholar
  56. Silva E, Rajapakse N, Kortenkamp A (2002) Something from “nothing”—eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36:1751–1756CrossRefGoogle Scholar
  57. Skakkebaek NE (1998) Trends in male reproductive health. Environmental aspects. Adv Exp Med Biol 444:1–2, discussion 3–4Google Scholar
  58. Skakkebaek NE, Rajpert-De Meyts E, Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16:972–978CrossRefGoogle Scholar
  59. Smith DC, Redman BG, Flaherty LE, Li L, Strawderman M, Pienta KJ (1998) A phase II trial of oral diethylstilbesterol as a second-line hormonal agent in advanced prostate cancer. Urology 52:257–260CrossRefGoogle Scholar
  60. Sole M, Lopez de Alda MJ, Castillo M, Porte C, Ladegaard-Pedersen K, Barcelo D (2000) Estrogenicity determination in sewage treatment plants and surface waters from the catalonian area (NE Spain). Environ Sci Technol 34:5076–5083CrossRefGoogle Scholar
  61. Sonnenschein C, Soto AM (1998) An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol 65:143–150CrossRefGoogle Scholar
  62. Soto AM, Justicia H, Wray JW, Sonnenschein C (1991) p-Nonyl-phenol: an estrogenic xenobiotic released from “modified” polystyrene. Environ Health Perspect 92:167–173CrossRefGoogle Scholar
  63. Soto AM, Fernandez MF, Luizzi MF, Oles Karasko AS, Sonnenschein C (1997) Developing a marker of exposure to xenoestrogen mixtures in human serum. Environ Health Perspect 105(Suppl 3):647–654CrossRefGoogle Scholar
  64. Sumner L et al (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221CrossRefGoogle Scholar
  65. Thomas P, Dong J (2006) Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 102:175–179CrossRefGoogle Scholar
  66. Tollefsen KE (2002) Interaction of estrogen mimics, singly and in combination, with plasma sex steroid-binding proteins in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 56:215–225CrossRefGoogle Scholar
  67. Tyler CR, Jobling S, Sumpter JP (1998) Endocrine disruption in wildlife: a critical review of the evidence. Crit Rev Toxicol 28:319–361CrossRefGoogle Scholar
  68. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH, Shioda T, Soto AM, Vom Saal FS, Welshons WV, Zoeller RT, Myers JP (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33:378–455CrossRefGoogle Scholar
  69. Weiss JM, Simon E, Stroomberg GJ, de Boer R, de Boer J, van der Linden SC, Leonards PE, Lamoree MH (2011) Identification strategy for unknown pollutants using high-resolution mass spectrometry: androgen-disrupting compounds identified through effect-directed analysis. Anal Bioanal Chem 400:3141–3149CrossRefGoogle Scholar
  70. Weller MG (2012) A unifying review of bioassay-guided fractionation, effect-directed analysis and related techniques. Sensors 12:9181–9209CrossRefGoogle Scholar
  71. White R, Jobling S, Hoare SA, Sumpter JP, Parker MG (1994) Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135:175–182CrossRefGoogle Scholar
  72. Zalko D, Costagliola R, Dorio C, Rathahao E, Cravedi JP (2003) In vivo metabolic fate of the xeno-estrogen 4-n-nonylphenol in Wistar rats. Drug Metab Dispos 31:168–178CrossRefGoogle Scholar
  73. Zhang X, Gao Y, Li Q, Li G, Guo Q, Yan C (2011) Estrogenic compounds and estrogenicity in surface water, sediments, and organisms from Yundang Lagoon in Xiamen, China. Arch Environ Contam Toxicol 61:93–100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Adeline Jondeau-Cabaton
    • 1
  • Amélie Soucasse
    • 1
  • Emilien L. Jamin
    • 2
  • Nicolas Creusot
    • 3
    • 4
  • Marina Grimaldi
    • 5
  • Isabelle Jouanin
    • 2
  • Sélim Aït-Aïssa
    • 3
  • Patrick Balaguer
    • 5
  • Laurent Debrauwer
    • 2
  • Daniel Zalko
    • 1
    Email author
  1. 1.INRA, UMR 1331 TOXALIM (Research Center in Food Toxicology), Xenobiotic Metabolism Team (MeX)ToulouseFrance
  2. 2.INRA, UMR 1331 TOXALIM (Research Center in Food Toxicology), MetaToul-AXIOMToulouseFrance
  3. 3.INERISUnité Ecotoxicologie in vitro et in vivoVerneuil-en-HalatteFrance
  4. 4.EPOC/LPTC-UMR 5255 CNRS Université Bordeaux 1TalenceFrance
  5. 5.Plateforme CMT-Equipe Signalisation Hormonale, Environnement et Cancer IRCMInstitut de Recherche en Cancérologie de Montpellier INSERM U896-UM1-CRLC Val d’AurelleMontpellier Cedex 5France

Personalised recommendations