Environmental Science and Pollution Research

, Volume 20, Issue 7, pp 4872–4880 | Cite as

Stability of core/shell quantum dots—role of pH and small organic ligands

  • Rute F. Domingos
  • Cristiana Franco
  • José P. Pinheiro
Research Article

Abstract

The improvement of knowledge about the toxicity and even processability, and stability of quantum dots (QD) requires the understanding of the relationship between the QD binding head group, surface structure, and interligand interaction. The scanned stripping chronopotentiometry and absence of gradients and Nernstian equilibrium stripping techniques were used to determine the concentration of Cd dissolved from a polyacrylate-stabilized CdTe/CdS QD. The effects of various concentrations of small organic ligands such as citric acid, glycine, and histidine and the roles of pH (4.5–8.5) and exposure time (0–48 h) were evaluated. The highest QD dissolution was obtained at the more acidic pH in absence of the ligands (52 %) a result of the CdS shell solubility. At pH 8.5 the largest PAA ability to complex the dissolved Cd leads to a further QD solubility until the equilibrium is reached (24 % of dissolved Cd vs. 4 % at pH 6.0). The citric acid presence resulted in greater QD dissolution, whereas glycine, an amino acid, acts against QD dissolution. Surprisingly, the presence of histidine, an amino acid with an imidazole functional group, leads to the formation of much strong Cd complexes over time, which may be non-labile, inducing variations in the local environment of the QD surface.

Keywords

Quantum dots Stability Dissolution Speciation Bioavailability Organic ligands 

Notes

Acknowledgment

Funding for this work was provided by the Fundação para a Ciência e Tecnologia (FCT), Portugal: Science 2008 IST-CQE3 “Environmental Chemistry” Assistant Researcher position to RFD and Project PTDC/AAC-AMB/111998/2009. JPP acknowledges the FCT funding support: Project Pest-OE/EQB/LA0023/2011.

Supplementary material

11356_2012_1457_MOESM1_ESM.docx (38 kb)
ESM 1 (DOCX 38 kb)

References

  1. Aldana J, Wang YA, Peng X (2001) Photochemical instability of CdSe nanocrystals coated by hydrophobic thiols. J Am Chem Soc 123:8844–8850CrossRefGoogle Scholar
  2. Aldana J, Lavelle N, Wang Y, Peng X (2005) Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. J Am Chem Soc 127:2496–2504. doi: 10.1021/ja047000+ CrossRefGoogle Scholar
  3. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52CrossRefGoogle Scholar
  4. Allison JD, Brown DS, Novo-Grada (1999) MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems, version 3.0. 3rd edn. In Office of Research and Development U.S. Environmental Protection Agency, AthensGoogle Scholar
  5. Aruguete DM, Guest JS, Yu WW, Love NG, Hochella MF Jr (2010) Interaction of CdSe/CdS core-shell quantum dots and Pseudomonas aeruginosa. Environ Chem 7:28–35. doi: 10.1071/EN09106 CrossRefGoogle Scholar
  6. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070CrossRefGoogle Scholar
  7. Celebi S, Erdamar AK, Sennaroglu A, Kurt A, Acar HY (2007) Synthesis and characterization of poly(acrylic acid) stabilized cadmium sulfide quantum dots. J Phys Chem B 111:12668–12675. doi: 10.1021/jp0739420 CrossRefGoogle Scholar
  8. Companys E, Cecília J, Codina G, Puy J, Galceran J (2005) Determination of Zn2+ concentration with AGNES using different strategies to reduce the deposition time. J Electroanal Chem 576:21–32CrossRefGoogle Scholar
  9. Crea F, de Stefano C, Gianguzza A, Pettignano A, Piazzese D, Sammartano S (2009) Acid-base properties of synthetic and natural polyelectrolytes: experimental results and models for the dependence on different aqueous media. J Chem Eng Data 54:589–605. doi: 10.1021/je800518j CrossRefGoogle Scholar
  10. David C, Companys E, Galceran J, Garcés JL, Mas F, Rey-Castro C, Salvador J, Puy J (2008) Competitive Cd2+/H+ complexation to polyacrylic acid described by the stepwise and intrinsic stability constants. J Phys Chem B 112:10092–10100. doi: 10.1021/jp802571f CrossRefGoogle Scholar
  11. de Stefano C, Gianguzza A, Piazzese D, Sammartano S (2000) Polyacrylate protonation in various aqueous ionic media at different temperatures and ionic strengths. J Chem Eng Data 45:876–881. doi: 10.1021/je0000219 CrossRefGoogle Scholar
  12. de Stefano C, Gianguzza A, Piazzese D, Sammartano S (2003) Polyacrylates in aqueous solution. The dependence of protonation on molecular weight, ionic medium and ionic strength. React Funct Polym 55:9–20CrossRefGoogle Scholar
  13. de Stefano C, Gianguzza A, Pettignano A, Sammartano S, Sciarrino S (2010) On the complexation of Cu(II) and Cd(II) with polycarboxyl ligands. Potentiometric studies with ISE-H+, ISE-Cu2+, and ISE-Cd2+. J Chem Eng Data 55:714–722. doi: 10.1021/je9004245 CrossRefGoogle Scholar
  14. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18CrossRefGoogle Scholar
  15. Domingos RF, Benedetti MF, Pinheiro JP (2007) Application of permeation liquid membrane and scanned stripping chronopotentiometry to metal speciation analysis of colloidal complexes. Anal Chim Acta 589:261–268CrossRefGoogle Scholar
  16. Domingos RF, Huidobro C, Companys E, Galceran J, Puy J, Pinheiro JP (2008) Comparison of AGNES (absence of gradients and Nernstian equilibrium stripping) and SSCP (scanned stripping chronopotentiometry) for trace metal speciation analysis. J Electroanal Chem 617:141–148CrossRefGoogle Scholar
  17. Domingos RF, Baalousha MA, Ju-Nam Y, Reid MM, Tufenkji N, Lead JR, Leppard GG, Wilkinson KJ (2009) Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43:7277–7284. doi: doi:10.1021/es900249m CrossRefGoogle Scholar
  18. Domingos RF, Simon DF, Hausser C, Wilkinson KJ (2011) Bioaccumulation and effects of CdTe/CdS quantum dots on Chlamydomonas reinhardtii—nanoparticles or the free ions? Environ Sci Technol 45:7664–7669. doi: 10.1021/es201193s CrossRefGoogle Scholar
  19. Galceran J, Companys E, Puy J, Cecília J, Garcés JL (2004) AGNES: a new electroanalytical technique for measuring free metal ion concentration. J Electroanal Chem 566:95–109CrossRefGoogle Scholar
  20. Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976CrossRefGoogle Scholar
  21. Guo W, Li JJ, Wang AA, Peng X (2003) Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. J Am Chem Soc 125:3901–3909. doi: 10.1021/ja028469c CrossRefGoogle Scholar
  22. Hogfeldt E, Miyajima T, Marinsky JA, Muhammed M (1989) Application of a single three parameter mode to titration data for some polyelectrolytes. Acta Chem Scand 43:496–499CrossRefGoogle Scholar
  23. Katchalsky A (1954) Problems in the physical chemistry of polyelectrolytes. J Polym Sci 2:159–184CrossRefGoogle Scholar
  24. Kim S, Fisher B, Eisler HJ, Bawendi M (2003) Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc 125:11466–11467CrossRefGoogle Scholar
  25. Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Stolzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338CrossRefGoogle Scholar
  26. Kiss T, Sóvágó I, Gergely A (1991) Critical survey of stability constants of complexes of glycine. Pure Appl Chem 63:597–638CrossRefGoogle Scholar
  27. Klimov VI, Mikhailovsky AA, Xu S, Malko A, Hollingsworth JA, Leatherdale CA, Eisler H-J, Bawendi MG (2000) Optical gain and stimulated emission in nanocrystal quantum dots. Science 290:314–317. doi: 10.1126/science.290.5490.314 CrossRefGoogle Scholar
  28. Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL (2003) Quantum dots as strain- and metabolism-specific microbiological labels. Appl Environ Microbiol 69:4205–4213CrossRefGoogle Scholar
  29. Knowles KE, Frederick MT, Tice DB, Morris-Cohen AJ, Weiss EA (2012) Colloidal quantum dots: think outside the (particle-in-a-) box. J Phys Chem Letters 3:18–26. doi: 10.1021/jz2013775 CrossRefGoogle Scholar
  30. Mahendra S, Zhu H, Colvin VL, Alvarez PJ (2008) Quantum dot weathering results in microbial toxicity. Environ Sci Technol 42:9424–9430CrossRefGoogle Scholar
  31. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150. doi: 10.1021/ja002535y CrossRefGoogle Scholar
  32. Michalet X, Pinaud F, Lacoste TD, Dahan M, Bruchez MP, Alivisatos AP, Weiss S (2001) Properties of fluorescent semiconductor nanocrystals and their apllication to biological labelling. Single Mol 2:261–276CrossRefGoogle Scholar
  33. Morris-Cohen AJ, Vasilenko V, Amin VA, Reuter MG, Weiss EA (2012) Model for adsorption of ligands to colloidal quantum dots with concentration-dependent surface structure. ACS Nano 6:557–565. doi: 10.1021/nn203950s CrossRefGoogle Scholar
  34. Peng XG, Wickham J, Alivisatos AP (1998) Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120:5343–5344. doi: 10.1021/JA9805425 CrossRefGoogle Scholar
  35. Pettit LD (1984) Critical survey of formation constants of complexes of histidine, phenylalanine, tyrosine, L-dopa and tryptophan. Pure Appl Chem 56:247–292CrossRefGoogle Scholar
  36. Pinheiro JP, van Leeuwen HP (2004) Scanned stripping chronopotentiometry of metal complexes: lability diagnosis and stability computation. J Electroanal Chem 570:69–75CrossRefGoogle Scholar
  37. Priester JH, Stoimenov PK, Mielke RE, Webb SM, Ehrhardt C, Zhang JP, Stucky GD, Holden PA (2009) Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic Pseudomonas aeruginosa. Environ Sci Technol 43:2589–2594CrossRefGoogle Scholar
  38. Rotureau E, van Leeuwen HP (2008) Kinetics of metal ion binding by polysaccharide colloids. J Phys Chem A 112:7177–7184. doi: 10.1021/jp800472g CrossRefGoogle Scholar
  39. Smith RM, Martell AE (1989a) Critical stability constants—inorganic complexes. Critical stability constants. Plenum, New YorkCrossRefGoogle Scholar
  40. Smith RM, Martell AE (1989b) Critical stability constants—other organic ligands. Plenum, New YorkCrossRefGoogle Scholar
  41. Sun W, Nešić S, Young D, Woollam RC (2008) Equilibrium expressions related to the solubility of the sour corrosion product mackinawite. Ind Eng Chem Res 47:1738–1742. doi: 10.1021/ie070750i CrossRefGoogle Scholar
  42. Tessler N, Medvedev V, Kazes M, Kan S, Banin U (2002) Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295:1506–1508. doi: 10.1126/science.1068153 CrossRefGoogle Scholar
  43. Vučemilović MI, Vukelić N, Rajh T (1988) Solubility and photocorrosion of small CdS particles. J Photochem Photobiol A Chem 42:157–167CrossRefGoogle Scholar
  44. Wang F, Tessier A (1999) Cadmium complexation with bisulfide. Environ Sci Technol 33:4270–4277. doi: 10.1021/es990283z CrossRefGoogle Scholar
  45. Westerflier SWFMHT, Kolar Z, Binsma JJM, Stein HN, Vandecasteele C (1987) Solubility of particulate cadmium sulfide at pH = 1–14: a radiotracer study. J Radioanal Nuclear Chem 111:305–317CrossRefGoogle Scholar
  46. Yang C-S, Awschalom DD, Stucky GD (2001) Kinetic-dependent crystal growth of size-tunable CdS nanoparticles. Chem Mater 13:594–598. doi: 10.1021/cm0005384 CrossRefGoogle Scholar
  47. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals. Chem Mater 15:2854–2860. doi: 10.1021/CM034081K CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rute F. Domingos
    • 1
  • Cristiana Franco
    • 1
  • José P. Pinheiro
    • 2
  1. 1.Centro de Química Estrutural, Instituto Superior TécnicoUniversidade Técnica de LisboaLisbonPortugal
  2. 2.Centro de Biomedicina Molecular Estrutural CBME/IBB, LAUniversidade do AlgarveFaroPortugal

Personalised recommendations