Environmental Science and Pollution Research

, Volume 20, Issue 7, pp 4969–4979 | Cite as

A multi-approach monitoring of particulate matter, metals and PAHs in an urban street canyon

  • Flavia De Nicola
  • Fabio Murena
  • M. Antonietta Costagliola
  • Anna Alfani
  • Daniela Baldantoni
  • M. Vittoria Prati
  • Ludovica Sessa
  • Valeria Spagnuolo
  • Simonetta Giordano
Research Article


For the first time until now, the results from a prediction model (Atmospheric Dispersion Modelling System (ADMS)-Road) of pollutant dispersion in a street canyon were compared to the results obtained from biomonitors. In particular, the instrumental monitoring of particulate matter (PM10) and the biomonitoring of 14 polycyclic aromatic hydrocarbons (PAHs) and 11 metals by Quercus ilex leaves and Hypnum cupressiforme moss bags, acting as long- and short-term accumulators, respectively, were carried out. For both PAHs and metals, similar bioaccumulation trends were observed, with higher concentrations in biomonitors exposed at the leeward canyon side, affected by primary air vortex. The major pollutant accumulation at the leeward side was also predicted by the ADMS-Road model, on the basis of the prevailing wind direction that determines different exposure of the street canyon sides to pollutants emitted by vehicular traffic. A clear vertical (3, 6 and 9 m) distribution gradient of pollutants was not observed, so that both the model and biomonitoring results suggested that local air turbulences in the street canyon could contribute to uniform pollutant distribution at different heights.


Moss bags Holm oak leaves Pollutant dispersion model PAHs Metals Naples urban area 



The authors wish to thank Assessorato Ambiente del Comune di Napoli and ANEA (Agenzia Napoletana Energia e Ambiente) for their support during monitoring campaign. The authors gratefully thank also Ivana Imperatore, the IPSIA Colosimo and the inhabitants living in Santa Teresa street who made the moss bag exposure possible. This work was financially supported by MIUR (PRIN 2007–2007AH8KT8).


  1. Adamo P, Bargagli R, Giordano S, Modenesi P, Monaci F, Pittao E, Spagnuolo V, Tretiach M (2008) Natural and pre-treatments induced variability in the chemical composition and morphology of lichens and mosses selected for active monitoring of airborne elements. Environ Pollut 152:11–19CrossRefGoogle Scholar
  2. Adamo P, Giordano S, Sforza A, Bargagli R (2011) Implementation of airborne trace element monitoring with devitalised transplants of Hypnum cupressiforme Hedw.: assessment of temporal trends and element contribution by vehicular traffic in Naples City. Environ Pollut 159:1620–1628CrossRefGoogle Scholar
  3. Alfani A, Bartoli G, Rutigliano FA, Maisto G, Virzo De Santo A (1996) Trace metal biomonitoring in the soil and the leaves of Quercus ilex in the urban area of Naples. Biol Trace Elem Res 51:117–131CrossRefGoogle Scholar
  4. Alfani A, Baldantoni D, Maisto G, Bartoli G, Virzo De Santo A (2000) Temporal and spatial variation in C, N, S and trace element contents in the leaves of Quercus ilex L. within the urban area of Naples. Environ Pollut 109:119–129CrossRefGoogle Scholar
  5. Alfani A, Maisto G, Prati MV, Baldantoni D (2001) Leaves of Quercus ilex L. as biomonitors of PAHs in the air of Naples (Italy). Atmos Environ 35:3553–3559CrossRefGoogle Scholar
  6. Alfani A, De Nicola F, Maisto G, Prati MV (2005) Long-term PAH accumulation after bud break in Quercus ilex L. leaves in a polluted environment. Atmos Environ 39:307–314CrossRefGoogle Scholar
  7. Andretta M, Leonzio B, Lucialli P, Righi S (2006) Application of the ISCST3 model to an industrial area: comparison between predicted and observed concentrations. In: Brebbia CA, Popov V (eds) Risk analysis V: simulation and hazard mitigation. WIT, Southampton, pp 187–196CrossRefGoogle Scholar
  8. Ares A, Aboal JR, Fernandez JA, Real C, Carballeira A (2009) Use of the terrestrial moss Pseudoscleropodium purum to detect sources of small scale contamination by PAHs. Atmos Environ 43:5501–5509CrossRefGoogle Scholar
  9. Ares A, Fernández JA, Aboal JR, Carballeira A (2011) Study of the air quality in industrial areas of Santa Cruz de Tenerife (Spain) by active biomonitoring with Pseudoscleropodium purum. Ecotox Environ Safe 74:533–541CrossRefGoogle Scholar
  10. Ares A, Aboal JR, Carballeira A, Giordano S, Adamo P, Fernández JA (2012) Moss bag biomonitoring: a methodological review. Sci Total Environ 432:143–158CrossRefGoogle Scholar
  11. Brandt J, Christensen JH, Frohn LM, Fi P, Berkowicz R, Zlatev Z (2001) Operational air pollution forecasts from European to local scale. Atmos Environ 35(Suppl 1):S91–S98CrossRefGoogle Scholar
  12. Brizio E, Genon G, Borsarelli S (2007) PM emissions in an urban context. Am J Environ Sci 3:166–174CrossRefGoogle Scholar
  13. Cao T, Wang M, An L, Yu Y, Lou Y, Guo S, Zuo B, Liu Y, Wu J, Cao Y, Zhu Z (2009) Air quality for metals and sulphur in Shanghai, China, determined with moss bags. Environ Pollut 157:1270–1278CrossRefGoogle Scholar
  14. Darlington AB, Dat JF, Dixon MA (2001) The biofiltration of indoor air: air flux and temperature influences the removal of toluene, ethylbenzene, and xylene. Environ Sci Technol 35:240–246CrossRefGoogle Scholar
  15. De Nicola F, Maisto G, Prati MV, Alfani A (2005) Temporal variations in PAH concentrations in Quercus ilex L. (holm oak) leaves in an urban area. Chemosphere 61:432–440CrossRefGoogle Scholar
  16. De Nicola F, Maisto G, Prati MV, Alfani A (2008) Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L. Environ Pollut 153:376–383CrossRefGoogle Scholar
  17. De Nicola F, Lancellotti C, Prati MV, Maisto G, Alfani A (2011) Biomonitoring of PAHs by using Quercus ilex leaves: source diagnostic and toxicity assessment. Atmos Environ 45:1428–1433CrossRefGoogle Scholar
  18. Di Sabatino S, Buccolieri R, Pulvirenti B, Britter RE (2008) Flow and pollutant dispersion in street canyons using FLUENT and ADMS-Urban. Environ Model Assess 13:369–381CrossRefGoogle Scholar
  19. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Official Journal of the European Union L 152, 1–44, 11/6/2008.Google Scholar
  20. European Commission (2004) PARTICULATES Characterisation of exhaust particulate emissions from road vehicles, Deliv. 8. Measurement of non-exhaust particulate matterGoogle Scholar
  21. Finardi S, De Maria R, D’Allura A, Cascone C, Calori G, Lollobrigida F (2008) A deterministic air quality forecasting system for Torino urban area, Italy. Environ Modell Softe 23:344–355CrossRefGoogle Scholar
  22. Giordano S, Adamo P, Sorbo S, Vingiani S (2005) Atmospheric trace metal pollution in the Naples urban area based on results from moss and lichen bags. Environ Pollut 136:431–442CrossRefGoogle Scholar
  23. Giordano S, Adamo P, Monaci F, Pittao E, Tretiach M, Bargagli R (2009) Bags with oven-dried moss for the active monitoring of airborne trace elements in urban areas. Environ Pollut 157:2798–2805CrossRefGoogle Scholar
  24. Giordano S, Adamo P, Spagnuolo V, Vaglieco B (2010) Instrumental and bio-monitoring of heavy metal and nanoparticle emissions from diesel engine exhaust in controlled environment. J Environ Sci 22:1357–1363CrossRefGoogle Scholar
  25. Giordano S, Adamo P, Spagnuolo V, Tretiach M, Bargagli R (2013) Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: towards a harmonisation of the moss-bag technique. Chemosphere 90:292–299CrossRefGoogle Scholar
  26. Gratani L, Crescente MF, Petruzzi M (2000) Relationship between leaf life-span and photosynthetic activity of Quercus ilex in polluted urban areas (Rome). Environ Pollut 110:19–28CrossRefGoogle Scholar
  27. Harmens H, Foan L, Simon V, Mills G (2013) Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review. Environ Pollut 173:245–254Google Scholar
  28. Hertel O, Berkowicz R, Larssen S (1990) The operational street pollution model (OSPM). In: Van Dop H, Steyn DG (Eds.) 18th International Meeting of NATO/CCMS on Air Pollution Modelling and its Application, vol 15. Canada, pp 741–749Google Scholar
  29. Hirtl M, Baumann-Stanzer K (2007) Evaluation of two dispersion models (ADMS-Roads and LASAT) applied to street canyons in Stockholm, London and Berlin. Atmos Environ 41:5959–5971CrossRefGoogle Scholar
  30. Karppinen A, Kukkonen J, Elolähde T, Konttinen M, Koskentalo T, Rantakrans E (2000) A modelling system for predicting urban air pollution: model description and applications in the Helsinki metropolitan area. Atmos Environ 34:3723–3733CrossRefGoogle Scholar
  31. Ketzel M, Omstedt G, Johansson C, During I, Pohjola M, Oettl D, Gidhagen L, Wahlin P, Lohmeyer A, Haakana M, Berkowicz R (2007) Estimation and validation of PM2.5/PM10 exhaust and non-exhaust emission factors for practical street pollution modelling. Atmos Environ 41:9370–9385CrossRefGoogle Scholar
  32. Knulst JC, Westling HO, Brorström-Lundén E (1995) Airborne organic micropollutant concentrations in mosses and humus as indicators for local versus long-range sources. Environ Monit Assess 36:75–91CrossRefGoogle Scholar
  33. Lehndorff E, Schwark L (2010) Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler—part III: major and trace elements. Atmos Environ 44:2822–2829CrossRefGoogle Scholar
  34. Liu CH, Barth MC, Leung DYC (2004) Large-eddy simulation of flow and pollutant transport in street canyons of different building-height-to-street-width ratios. J Appl Meteorol 43:1410–1424CrossRefGoogle Scholar
  35. Liu X, Zhang G, Jones KC, Li X, Peng X, Qi S (2005) Compositional fractionation of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum plumaeformae WILS.) from the northern slope of Nanling Mountains, South China. Atmos Environ 39:5490–5499CrossRefGoogle Scholar
  36. Michaels RA, Kleinman MT (2000) Incidence and apparent health significance of brief airborne particle excursions. Aerosol Sci Techn 32:93–105CrossRefGoogle Scholar
  37. Monaci F, Moni F, Lanciotti E, Grechi D, Bargagli R (2000) Biomonitoring of airborne metals in urban environments: new tracers of vehicle emission, in place of lead. Environ Pollut 107:321–327CrossRefGoogle Scholar
  38. Murena F (2012) Monitoring and modelling carbon monoxide concentrations in a deep street canyon: application of a two-box model. Atmos Pollut Res. doi: 10.5094/APR.2012.034
  39. Ötvös E, Kozák IO, Fekete J, Sharma VK, Tuba Z (2004) Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum cupressiforme) in Hungary. Sci Total Environ 330:89–99CrossRefGoogle Scholar
  40. Righi S, Lucialli P, Pollini E (2009) Statistical and diagnostic evaluation of the ADMS-Urban model compared with an urban air quality monitoring network. Atmos Environ 43:3850–3857CrossRefGoogle Scholar
  41. Sharma P, Khare M (2001) Modelling of vehicular exhausts—a review. Transport Res D-Tr E 6:179–198CrossRefGoogle Scholar
  42. Spagnuolo V, Zampella M, Giordano S, Adamo P (2011) Cytological stress and element uptake in moss and lichen exposed in bags in urban area. Ecotox Environ Safe 74:1434–1443CrossRefGoogle Scholar
  43. Vardoulakis S, Fisher BEA, Pericleous K, Gonzalez-Flesca N (2003) Modelling air quality in street canyons: a review. Atmos Environ 37:155–182CrossRefGoogle Scholar
  44. Vardoulakis S, Valiantis M, Milner J, ApSimon H (2007) Operational air pollution modelling in the UK—street canyon applications and challenges. Atmos Environ 41:4622–4637CrossRefGoogle Scholar
  45. Vitiello C (2011) Modellazione dei livelli di concentrazione di monossido di carbonio in uno street canyon con ADMS-Roads. Tesi di Laurea in Ingegneria Chimica, Università degli Studi di Napoli “Federico II”, NapoliGoogle Scholar
  46. Wickramasinghe AP, Karunaratne DGGP, Sivakanesan R (2011) PM10-bound polycyclic aromatic hydrocarbons: concentrations, source characterization and estimating their risk in urban, suburban and rural areas in Kandy, Sri Lanka. Atmos Environ 45:2642–2650CrossRefGoogle Scholar
  47. Yamartino RJ, Wiegand G (1986) Development and evaluation of simple models for the flow, turbulence and pollutant concentration fields within an urban street canyon. Atmos Environ 20:2137–2156CrossRefGoogle Scholar
  48. Zechmeister HG, Dullinger S, Hohenwallner D, Riss A, Hanus-Illnar A, Scharf S (2006) Pilot study on road traffic emissions (PAHs, heavy metals) measured by using mosses in a tunnel experiment in Vienna, Austria. Environ Sci Pollut R Int 13(6):398–405CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Flavia De Nicola
    • 1
  • Fabio Murena
    • 2
  • M. Antonietta Costagliola
    • 3
  • Anna Alfani
    • 4
  • Daniela Baldantoni
    • 4
  • M. Vittoria Prati
    • 3
  • Ludovica Sessa
    • 4
  • Valeria Spagnuolo
    • 5
  • Simonetta Giordano
    • 5
  1. 1.Dipt. Scienze per la Biologia, la Geologia e l’AmbienteUniversità degli Studi del SannioBeneventoItaly
  2. 2.Dipt. Ingegneria ChimicaUniversità degli Studi di Napoli Federico IINaplesItaly
  3. 3.Istituto Motori CNRNaplesItaly
  4. 4.Dipt. Chimica e BiologiaUniversità degli Studi di SalernoFiscianoItaly
  5. 5.Dipt. BiologiaUniversità degli Studi di Napoli Federico II, Complesso Universitario Monte Sant’AngeloNaplesItaly

Personalised recommendations