Environmental Science and Pollution Research

, Volume 20, Issue 10, pp 6917–6933 | Cite as

Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China

  • Sarah Schönbrodt-StittEmail author
  • Anna Bosch
  • Thorsten Behrens
  • Heike Hartmann
  • Xuezheng Shi
  • Thomas Scholten
Processes and Environmental Quality in the Yangtze River System


In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km2) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha−1 h−1 a−1. With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha−1 h−1 a−1 at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a = 1,986 MJ mm ha−1 h−1 a−1. The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of soil erosion risk.


Rainfall erosivity R factor Soil erosion modeling Spatial regionalization Elevation bands Three Gorges ecosystem Yangtze River 



This study was conducted within the framework of the Sino-German joint research project YANGTZE GEO. The funding by the German Federal Ministry for Education and Research (BMBF, grant no. 03G 0669) is highly acknowledged.


  1. Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) WCDMP No. 53, WMD/TD No. 1186: Guidelines on climate metadata and homogenization. World Meteorological Organization, Geneva, pp. 51.
  2. Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675CrossRefGoogle Scholar
  3. Alipour ZT, Mahdian MH, Pazira E, Hakimkhani S, Saeedi M (2012) The determination of the best rainfall erosivity index for Namak Lake Basin and evaluation of spatial variations. J Basic Appl Sci Res 2:484–494Google Scholar
  4. Arnoldus HMJ (1977) Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. FAO Soils Bulletin 34:39–51Google Scholar
  5. Ateshian KH (1974) Estimation of rainfall erosion index. J Irrig Drain Eng, ASCE, IR-3, 293–307Google Scholar
  6. Auerswald K (1998) Bodenerosion durch Wasser. In: Richter G (ed) Bodenerosion; Analyse und Bilanz eines Umweltproblems. Wissenschaftliche Buchgesellschaft, Stuttgart, pp 33–42Google Scholar
  7. Bagarello V, D’Asaro F (1994) Estimating single storm erosion index. T ASAE 37:785–791Google Scholar
  8. Batjes NH (1996) Global assessment of land vulnerability to water erosion on a ½° by ½° grid. Land Degrad Dev 7:353–365CrossRefGoogle Scholar
  9. Bergmann A, Bi Y, Chen L, Floehr T, Henkelmann B, Holbach A, Hollert H, Hu W, Kranzioch I, Klumpp E, Küppers S, Norra S, Ottermanns R, Pfister G, Roß-Nickoll M, Schäffer A, Schleicher N, Schmidt B, Scholz-Strake B, Schramm KW, Subklew G, Tiehm A, Temoka C, Wang J, Westrich B, Wilken RD, Wolf A, Xiang X, Yuan Y (2012) The Yangtze-Hydro Project: a Chinese–German environmental program. Environ Sci Pollut Res 19:1341–1344CrossRefGoogle Scholar
  10. Bieger K, Hörmann G, Fohrer N (2012) Simulation of streamflow and sediment with the Soil Water Assessment Tool in a data scarce catchment in the Three Gorges Region. China J Environ Qual. doi: 10.2134/jeq2011.0383
  11. Bolinne A, Lauant A, Rosseau P, Pauwels JM, Gabriels D, Aeltermann J (1980) Provisional rain erosivity map of Belgium. In: DeBoodt M, Gabriels D (eds) Assessment of erosion. Wiley, Chichester, pp 111–120Google Scholar
  12. Brown LC, Foster GR (1987) Storm erosivity using idealized intensity distributions. Trans ASEA 30:379–386Google Scholar
  13. Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58:11–27CrossRefGoogle Scholar
  14. Cai GG, Wang H, Curtin D, Zhu Y (2005) Evaluation of the EUROSEM model with single event data on Steeplands in the Three Gorges Reservoir Area, China. Catena 59:19–33CrossRefGoogle Scholar
  15. Chorley RJ (1978) The hillslope hydrological cycle. In: Kirkby MJ (ed) Hillslope hydrology. Wiley, Chichester, pp 1–42Google Scholar
  16. Cornelis WM, Oltenfreiter G, Gabriels D, Hartmann R (2004) Splash-saltation of sand due to wind-driven rain: vertical deposition flux and sediment transport rate. Soil Sci Soc Am J 68:532–540Google Scholar
  17. Da Silva AM (2004) Rainfall erosivity map for Brazil. Catena 57:251–259CrossRefGoogle Scholar
  18. De Lima JLMP, Tavares P, Singh VP, De Lima MIP (2009) Investigating the importance of rainstorm direction on overland flow and soil loss in a laboratory circular soil-flume. Geoderma 152:9–15CrossRefGoogle Scholar
  19. Dettling W (1989) Eine mathematische Betrachtung des R-Faktors. Z Geomorphol 33:373–377Google Scholar
  20. Diodato N, Bellocchi G (2009) Assessing and modelling changes in rainfall erosivity at different climate scales. Earth Surf Proc Land 34:969–980CrossRefGoogle Scholar
  21. DVWK (1990) Grundlagen der Verdunstungsermittlung und Erosivität von Niederschlägen. Deutscher Verband für Wasserwirtschaft und Kulturbau (eds) Parey, HamburgGoogle Scholar
  22. Elsenbeer H, Cassel DK, Tinner W (1993) A daily rainfall erosivity model for Western Amazonia. J Soil Water Conserv 48:439–444Google Scholar
  23. Erpul G, Gabriels D, Norton LD (2005) Sand detachment by wind-driven raindrops. Earth Surf Proc Land 30:241–250CrossRefGoogle Scholar
  24. Ferro V, Porto P, Yu B (1999) A comparative study of rainfall erosivity estimation for southern Italy and southeastern Australia. Hydrolog Sci J 44:3–24CrossRefGoogle Scholar
  25. Foster GR, McCool DK, Renard KG, Moldenhauer WC (1981) Conversion of the universal soil loss equation to SI metric units. J Soil Water Conserv 36:355–359Google Scholar
  26. Fournier F (1960) Climat et erosion; la relation entre l’erosion du sol par l’eau et les precipitations atmosperiques. Presses universitaires de Frances, Paris, p 201Google Scholar
  27. Fu BJ, Zhao WW, Chen LD, Zhang QJ, Lü YH, Gulinck H, Poesen J (2005) Assessment of soil erosion at large watershed scale using RUSLE and GIS: a case study in the Loess Plateau of China. Land Degrad Dev 16:73–85CrossRefGoogle Scholar
  28. Gasman PW, Reyes MR, Green CH, Arnold JG (2007) The Soil and Water Assessment Tool: historical development, applications, and future research directions. Trans ASABE 50:1211–1250Google Scholar
  29. Geißler C, Kühn P, Böhnke M, Bruelheide H, Shi X, Scholten T (2012) Measuring splash erosion under vegetation using sand-filled splash cups. Catena 91:85–93CrossRefGoogle Scholar
  30. Ghahramani A, Yoshiharu I, Mudd SM (2011) Field experiments constraining the probability distribution of particle travel distances during natural rainstorms on different slope gradients. Earth Surf Proc Land 37:473–485CrossRefGoogle Scholar
  31. Goovaerts P (1999) Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena 34:227–242CrossRefGoogle Scholar
  32. Hao F, Chang Y, Ning D (2004) Assessment of China’s economic loss resulting from the degradation of agricultural land in the end of 20th century. J Environ Sci 16:199–203Google Scholar
  33. He L, King L, Jiang T (2003) On the land use in the Three Gorges Reservoir area. J Geogr Sci 13:416–422CrossRefGoogle Scholar
  34. Hudson N (1995) Soil conservation, 3rd edn. Batsford, London, p 210Google Scholar
  35. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT).
  36. Jones A, Panagos P, Barcelo S, Bouraoui F, Bosco C, Dewitte O, Gardi C, Erhard M, Hervás J, Hiederer R, Jeffery S, Lükewille A, Marmo L, Montanarella L, Olazábal C, Petersen JE, Penizek V, Strassburger T, Tóth G, Van Den Eeckhaut M, Van Liedekerke M, Verheijen F, Viestova E, Yigini Y (2012) The state of soil in Europe—a contribution of the JRC to the EEA Environment State and Outlook Report – SOER 2010. Luxembourg: Publications Office of the European Union, 76 pp, doi: 10.2788/77361 (online)
  37. Kavian A, Fathollah Nejad Y, Habibnejad M, Soleimani K (2011) Modeling seasonal rainfall erosivity on a regional scale: a case study from Northeastern Iran. Int J Environ Res 5:939–950Google Scholar
  38. Lal R (1976)Soil erosion problems on an alfisol in western Nigeria and their control. Communications and Information Office, IITA Monograph no. 1, Ibadan, Nigeria, pp. 208, available from
  39. Lal R (1990) Soil erosion in the Tropics: principles and management. McGraw-Hill, New York, p 580Google Scholar
  40. Liu Y, Luo Z (2005) A study on estimation of the amount of soil erosion in small watershed based on GIS: a case study in the Three Gorge Area of China. IGARSS IEEE 3:1859–1863Google Scholar
  41. Lo A, El-Swaify SA, Dangler EW, Shinshirl L (1985) Effectiveness of EI30 as an erosivity index in Hawaii. In: El-Swaify SA, Moldenhauer WC, Lo A (eds) Soil erosion and conservation. Soil Conserv. Soc. Am, Ankeny, pp 384–392Google Scholar
  42. Lu X, Higgitt D (2000) Estimating erosion rates on sloping agricultural land in the Yangtze Three Gorges, China, from caesium- 137 measurements. Catena 39:33–51CrossRefGoogle Scholar
  43. Mannaerts CM, Gabriels D (2000) Rainfall erosivity in Cape Verde. Soil Till Res 55:207–212CrossRefGoogle Scholar
  44. Men M, Yu Z, Xu H (2008) Study on the spatial pattern of rainfall erosivity based on geostatistics in Hebei Province. China Front Agric China 2:281–289CrossRefGoogle Scholar
  45. Meng QH, Fu BJ, Yang LZ (2001) Effects on land use on soil erosion and nutrient loss in the Three Gorges Reservoir Area. China Soil Use Manage 17:288–291CrossRefGoogle Scholar
  46. Meusberger K, Steel A, Panagos P, Montanarella L, Alewell C (2012) Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrol Earth Syst Sci 16:167–177CrossRefGoogle Scholar
  47. Mikhailova EA, Bryant RB, Schwager SJ, Smith SD (1997) Predicting rainfall erosivity in Honduras. Soil Sci Soc Am J 61:273–279CrossRefGoogle Scholar
  48. Mölg T, Chiang JCH, Gohm A, Cullen NJ (2009) Temporal precipitation variability versus altitude on a tropical high mountain: Observations and mesoscale atmospheric modelling. Q J R Meteorol Soc 135:1439–1455CrossRefGoogle Scholar
  49. Montgomery DR (2007) Dirt: The erosion of civilizations. University of California Press, London, p 285Google Scholar
  50. Morgan RPC, Nearing MA (eds) (2011) Handbook of erosion modelling, 1st edn. Blackwell, Chichester, p. 416Google Scholar
  51. Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols MH, Nunes JP, Renschler CS, Souchère V, Van Oost K (2005) Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61:131–154CrossRefGoogle Scholar
  52. Oduro-Afriyie K (1996) Rainfall erosivity map for Ghana. Geoderma 74:161–166CrossRefGoogle Scholar
  53. Onchev NG (1985) Universal index for calculating rainfall erosivity. In: El-Swaify SA, Moldenhauer WC, Lo A (eds) Soil erosion and conservation. Soil Conserv. Soc. Am, Ankeny, pp 424–431Google Scholar
  54. Pimentel D (2006) Soil erosion: a food and environmental threat. Environ Dev Sustain 8:119–137CrossRefGoogle Scholar
  55. Renard KG, Freimund JR (1994) Using monthly precipitation data to estimate the R-factor in the revised USLE. J Hydrol 157:287–306CrossRefGoogle Scholar
  56. Renard KG, Foster GR, Weesies GA, McCool DK, Yoder, DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Agriculture Handbook No.703, pp. 384Google Scholar
  57. Richardson CW, Foster GR, Wright DA (1983) Estimation of erosion index from daily rainfall amount. T ASAE 26:153–156Google Scholar
  58. Rogler H, Schwertmann U (1981) Erosivität der Niederschläge und Isoerodentkarte Bayerns. Z. Flurbereinig 22:99–112Google Scholar
  59. Roose EJ (1976) Use of the universal soil loss equation to predict erosion in West Africa. Soil Conserv. Soc. Am, Ankeny, Iowa, pp 60–74Google Scholar
  60. Salako FK (1995) Rainfall temporal variability and erosivity in subhumid and humid zones of southern Nigeria. Land Degrad Dev 17:541–555CrossRefGoogle Scholar
  61. de Santos Loureiro N, de Azevedo Coutinho M (2001) A new procedure to estimate the RUSLE EI30 index based on monthly rainfall data and applied to the Algarve region. Portugal J Hydrol 250:12–18CrossRefGoogle Scholar
  62. Scholten T, Geißler C, Goc J, Kühn P, Wiegand C (2011) A new splash cup to measure the kinetic energy of rainfall. J Plant Nutr Soil Sc 174:596–601CrossRefGoogle Scholar
  63. Schönbrodt S, Saumer P, Behrens T, Seeber C, Scholten T (2010) Assessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central China. JES 21:835–845Google Scholar
  64. Seeber C, Hartmann H, Xiang W, King L (2010) Land use change and causes in the Xiangxi Catchment, Three Gorges Area, derived from multispectral data. JES 21:846–855Google Scholar
  65. Seuffert O (1998) Zukunftsperspektiven der Bodenerosionsforschung. In: Richter G (ed) Bodenerosion; Analyse und Bilanz eines Umweltproblems. Wissenschaftliche Buchgesellschaft, Stuttgart, pp 152–168Google Scholar
  66. Shamshad A, Azhari MN, Isa MH, Wan Hussin WMA, Parida BP (2008) Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in Peninsular Malaysia. Catena 72:423–432CrossRefGoogle Scholar
  67. Shi ZH, Cai CF, Ding SW, Wang TW, Chow TL (2004) Soil conservation planning at the small watershed level using RUSLE with GIS. A case study in the Three Gorges Area of China. Catena 55:33–48CrossRefGoogle Scholar
  68. Shi ZH, Ai L, Fang NF, Zhu HD (2012) Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: a case study in the Three Gorges Area. China J Hydrol 438–439:156–167CrossRefGoogle Scholar
  69. Smithen AA, Schulze RE (1982) The spatial distribution in Southern Africa of rainfall erosivity for use in the universal soil loss equation. Water SA 8:74–78Google Scholar
  70. Stocking, M.A., Elwell, H.A., 1976. Rainfall erosivity over Rhodesia. Trans. Inst. Br. Geogr., New Series 1, 231–245Google Scholar
  71. Subklew G, Ulrich J, Fürst L, Höltkemeier A (2010) Environmental Impacts of the Yangtze Three Gorges Project—an overview of the Chinese–German Research Cooperation. JES 21:817–823Google Scholar
  72. Sukhanovski YP, Ollesch G, Khan KY, Meißner R (2002) A new index for rainfall erosivity on a physical basis. J Plant Nutr Soil Sc 165:51–57CrossRefGoogle Scholar
  73. Sun G, McNulty SG, Moore J, Bunch C, Ni J (2002) Potential impacts of climate change on rainfall erosivity and water availability in China in the next 100 years. Proceedings of the 12th Intern. Soil. Conserv. Conference, Beijing, China.
  74. Toy TJ, Foster GR (1998) Guidelines for the use of the Revised Universal Soil Loss Equation (RUSLE) version 1.06 on mined land, construction sites, reclaimed land. Office of Surface Mining, Reclamation, and Enforcement, p. 149.
  75. Van der Knijff JM, Jones RJA, Montanarella L (1999) Soil erosion risk management in Italy. European Commission, European Soil Bureau, p. 52Google Scholar
  76. Wang G, Gertner G, Singh V, Shinkareva S, Parysow P, Anderson A (2002) Spatial and temporal prediction and uncertainty of soil loss using revised universal soil loss equation: a case study in rainfall and runoff erosivity for soil loss. Ecol Model 153:143–155CrossRefGoogle Scholar
  77. Weilguni V (2006) Regionalisierung des Niederschlags. Wiener Mitteilungen Band 197, Methoden der hydrologischen Regionalisierung, 71–92Google Scholar
  78. Wischmeier WH, Smith DD (1958) Rainfall energy and its relationship to soil loss. Trans Am Geophys Union 39:285–291CrossRefGoogle Scholar
  79. Wischmeier WH (1959) A rainfall erosion index for a universal soil-loss equation. Soil Sci Soc Am J 23:246–249CrossRefGoogle Scholar
  80. Wischmeier WH (1962) Rainfall erosion potential. J Agr Eng Res 43:212–225Google Scholar
  81. Wischmeier WH, Smith DD (1965) Predicting rainfall-erosion losses from cropland east of the Rocky Mountains - Guide for Selection of Practices for Soil and Water Conservation. Agriculture Handbook No. 282, USDA, Washington, p. 47.
  82. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide to conservation planning. Agriculture Handbook No. 537, USDA, Washington, p. 58, available from
  83. Wu YJ, King L, Jiang T (2006) Climatic vertical graduation and its use in the Xiangxi River Catchment. In: Cai Q, Fohrer N (eds) Sino-German Workshop on Environmental Impacts of Large-scale Hydraulic Engineer. Programme and Abstracts, March 2006, Xingshan, pp 104–108Google Scholar
  84. Wu C, Zhou Z, Xiao W, Wang P, Teng M, Huang Z (2011) Estimation of soil erosion in the Three Gorges Reservoir Area of China using RUSLE, remote sensing and GIS. J. Food. Agri Environ 9:728–734Google Scholar
  85. Xie Y, Liu B, Nearing MA (2002) Practical tresholds for separating erosive and non-erosive storms. Trans ASAE 45:1843–1847Google Scholar
  86. Xu Y, Peng J, Shao X (2009) Assessment of soil erosion using RUSLE and GIS: a case study of the Maotiao River watershed, Guizhou Province. China Environ Geol 56:1643–1652CrossRefGoogle Scholar
  87. Yu B, Rosewell CJ (1998) RECS: A program to calculate the R-factor for the USLE/RUSLE using BOM/ AWS Pluviograph data. ENS Working Paper No. 8/98, pp. 15Google Scholar
  88. Zhang WB, Fu JS (2003) Rainfall erosivity estimation under different rainfall amount. Resources Science 25:35–41 (in Chinese with English Abstract)Google Scholar
  89. Zhou P (2008) Landscape-scale erosion modeling and ecological restoration for a mountainous watershed in Sichuan, China. Univ Helsinki Tropic Forest Rep 35:95Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sarah Schönbrodt-Stitt
    • 1
    Email author
  • Anna Bosch
    • 1
  • Thorsten Behrens
    • 1
  • Heike Hartmann
    • 2
  • Xuezheng Shi
    • 3
  • Thomas Scholten
    • 1
  1. 1.Department of Geosciences, Chair of Physical Geography and Soil ScienceUniversity of TuebingenTübingenGermany
  2. 2.College of Health, Environment and Science, Department of Geography, Geology and the EnvironmentSlippery Rock UniversitySlippery RockUSA
  3. 3.Institute of Soil Science, Department for Soil Resources and Remote Sensing ApplicationChinese Academy of SciencesNanjingPeople’s Republic of China

Personalised recommendations