Advertisement

Environmental Science and Pollution Research

, Volume 20, Issue 3, pp 1239–1260 | Cite as

Nanoscale materials and their use in water contaminants removal—a review

  • Iram Mohmood
  • Cláudia Batista Lopes
  • Isabel Lopes
  • Iqbal Ahmad
  • Armando C. Duarte
  • Eduarda Pereira
Review Article

Abstract

Water scarcity is being recognized as a present and future threat to human activity and as a consequence water purification technologies are gaining major attention worldwide. Nanotechnology has many successful applications in different fields but recently its application for water and wastewater treatment has emerged as a fast-developing, promising area. This review highlights the recent advances on the development of nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater that are contaminated by toxic metals, organic and inorganic compounds, bacteria and viruses. In addition, the toxic potential of engineered nanomaterials for human health and the environment will also be discussed.

Keywords

Nanotechnology Nanoscale material Nanoparticles Water purification Water remediation Toxicity 

Notes

Acknowledgement

Iram Mohmood (SFRH/BD/74410/2010), Claúdia Batista Lopes (SFRH/BPD/45156/2008), Isabel Lopes, Iqbal Ahmad, Armando Duarte and Eduarda Pereira are grateful to the Portuguese Foundation for Science and Technology (FCT), FSE and POPH funds (Programa Ciência 2007) and the Aveiro University Research Institute/Centre for Environmental and Marine Studies (CESAM) for partial financial supports.

References

  1. Adesina AA (2004) Industrial exploitation of photocatalysis: progress, perspectives and prospects. Catal Surv Asia 8:265–273CrossRefGoogle Scholar
  2. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals fromwastewater. Bioresour Technol 98:2243–2257CrossRefGoogle Scholar
  3. Ahmad AL, Ooi BS, Mohammad AW, Choudhury JP (2004) Development of a highly hydrophobic nanofiltration membrane for desalination and water treatment. Desalination 168:215–221CrossRefGoogle Scholar
  4. Akasaka T, Watari F (2009) Capture of bacteria by flexible carbon nanotubes. Acta Biomater 5:607–612CrossRefGoogle Scholar
  5. Allabashi R, Arkas M, Hörmann G, Tsiourvas D (2007) Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Res 41:476–486CrossRefGoogle Scholar
  6. Albuquerque JEC, Mendez MO, Coutinho ADR, Franco TT (2008) Removal of cyanobacterial toxins from drinking water by adsorption on activated carbon fibers. Material Res 11:370–80Google Scholar
  7. Alvarez-Ayuso E, Garcia-Sanchez A, Querol X (2003) Purification of metal electroplating waste waters using zeolites. Water Res 37:4855–4862CrossRefGoogle Scholar
  8. Amal R, McEvoy S, Beydoun D, Low G (1999) Role of nanoparticles in photocatalysis. J Nanopart Res 1:439–458CrossRefGoogle Scholar
  9. Anandan S, Lee G-J, Chen P-K, Fan C, Wu JJ (2010) Removal of orange II dye in water by visible light assisted photocatalytic ozonation using Bi2O3 and Au/Bi2O3 nanorods. Ind Eng Chem Res 49:9729–9737CrossRefGoogle Scholar
  10. Arkas M, Tsiourvas D, Paleos CM (2010) Functional dendritic polymers for the development of hybrid materials for water purification. Macromol Mater Eng 295:883–898CrossRefGoogle Scholar
  11. Arkas M, Allabashi R, Tsiourvas D, Mattausch E-M, Perfler R (2006) Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ Sci Technol 40:2771–2777CrossRefGoogle Scholar
  12. Arkas M, Paleos CM, Eleades L, Tsiourvas D (2005) Alkylated hyperbranched polymers as molecular nanosponges for the purification of water from polycyclic aromatic hydrocarbons. J Appl Polym Sci 97:2299–2305CrossRefGoogle Scholar
  13. Aschberger K, Micheletti C, Sokull-Klüttgen B, Christensen FM (2011) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—lessons learned from four case studies. Environ Inter 37:1143–1156CrossRefGoogle Scholar
  14. Athanasekou CP, Romanos GE, Katsaros FK, Kordatos K, Likodimos V, Falaras P (2012) Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes. J Memb Sci 392:192–203CrossRefGoogle Scholar
  15. Atia AA, Donia AM, El-Enein SA, Yousif AM (2007) Effect of chain length of aliphatic amines immobilized on a magnetic glycidyl methacrylate resin towards the uptake behavior of Hg(II) from aqueous solutions. Sep Sci Technol 42:403–420CrossRefGoogle Scholar
  16. Bae E, Choi W (2003) Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ Sci Technol 37:147–152CrossRefGoogle Scholar
  17. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192CrossRefGoogle Scholar
  18. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468CrossRefGoogle Scholar
  19. Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT (2001) Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 1:18–21CrossRefGoogle Scholar
  20. Barakat MA, Schaeffer H, Hayes G, Ismat-Shah S (2005) Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl Catal B Environ 57:23–30CrossRefGoogle Scholar
  21. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465CrossRefGoogle Scholar
  22. Bina B, Pourzamani H, Rashidi A, Amin M (2012) Ethylbenzene removal by carbon nanotubes from aqueous solution. J Environ Public Health 817:187–195Google Scholar
  23. Bhattacharyya D, Hestekin JA, Brushaber P, Cullen L, Bachas LG, Sikdar SK (1998) Novel poly-glutamic acid functionalized microfiltration embranes for sorption of heavy metals at high capacity. J Membr Sci 141:121–135CrossRefGoogle Scholar
  24. Biswas P, Wu C-Y (2005) Nanoparticles and the environment. J AirWaste Manage Assoc 55:708–746Google Scholar
  25. Blount BC, Pirkle JL, Osterloh JD, Valentin-Blasini L, Caldwell KL (2006) Urinary perchlorate and thyroid hormone levels in adolescent and adult men and women living in the United States. Environ Health Pers 114:1865–1871Google Scholar
  26. Borai EH, El-Sofany EA, Morcos TN (2007) Development and optimization of magnetic technologies based processes for removal of some toxic heavy metals. Adsorption 13:95–104CrossRefGoogle Scholar
  27. Borker P, Salker AV (2007) Solar assisted photocatalytic degradation of Naphthol Blue Black dye using Ce1 − xMnxO2. Mater Chem Phys 103:366–370CrossRefGoogle Scholar
  28. Bottero JY, Rose J, Wiesner MR (2006) Nanotechnologies. Tools for sustainability in a new wave of water treatment processes. Integr Environ Assess Manag 2:391–395CrossRefGoogle Scholar
  29. Bowman RS (2002) Applications of surfactant-modified zeolites to environmental remediation. Micropor Mesopor Mater 61:43–56CrossRefGoogle Scholar
  30. Brant JA, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553CrossRefGoogle Scholar
  31. Brady-Estevez AS, Kang S, Elimelech M (2008) A single walled carbon nanotube filter for removal of viral and bacterial pathogens. Small 4:481–484CrossRefGoogle Scholar
  32. Bull RJ, Brinbaum LS, Cantor KP, Rose JB, Butterworth BE, Pegram R, Tuomisto J (1995) Water chlorination. Essential process and cancer hazard. Fund Appl Toxicol 28:155–166CrossRefGoogle Scholar
  33. Cai YQ, Cai Y, Mou SF, Lu YQ (2005) Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J Chromatogr A 1081:245–247CrossRefGoogle Scholar
  34. Camblor MA, Corma A, Valencia S (1998) Synthesis in fluoride media and characterization of aluminosilicate zeolite beta. J Mater Chem 8:2137–2145CrossRefGoogle Scholar
  35. Cao J, Elliott D, Zhang W-X (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7:499–506CrossRefGoogle Scholar
  36. Card JW, Zeldin DC, Bonner JC, Nestmann ER (2008) Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 295:400–511CrossRefGoogle Scholar
  37. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177CrossRefGoogle Scholar
  38. Celebi O, Uzum C, Shahwan T, Erten HN (2007) A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. J Hazard Mater 148:761–767CrossRefGoogle Scholar
  39. Chen CZS, Cooper S (2002) Interactions between dendrimer biocides and bacterial membranes. Biomateri 23:3359–3368CrossRefGoogle Scholar
  40. Chen L, Wang T, Tong J (2011) Application of derivatized magnetic materials to the separation and the pre-concentration of pollutants in water samples. Trends in Analy Chem 30:207–215Google Scholar
  41. Chen Y, Crittenden J, Hackney S, Sutter L, Hand D (2005) Preparation of a novel TiO2-based pn junction nanotube photocatalyst. Environ Sci Technol 39:1201–1208CrossRefGoogle Scholar
  42. Cheng R, Wang JL, Zhang WX (2007) Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nano-sized Fe0. J Hazard Mater 144:334–339CrossRefGoogle Scholar
  43. Cho IH, Kim YG, Yang JK, Lee NH, Lee SM (2006) Solar-chemical treatment of groundwater contaminated with petroleum at gas station sites: ex situ remediation using solar/TiO2 photocatalysis and solar photo-fenton. J Environ Sci Health A 4:457–473Google Scholar
  44. Cho IH, Park JH, Kim YG (2005) Oxidative degradation and toxicity reduction of trichloroethylene (TCE) in water using TiO2/solar light, comparative study of TiO2 slurry and immobilized systems. J Environ Sci Health A 40:1033–1044CrossRefGoogle Scholar
  45. Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311CrossRefGoogle Scholar
  46. Coetser SE, Heath RG, Ndombe N (2007) Diffuse pollution associated with the mining sectors in South Africa: a first-order assessment. Water Sci Technol 55:9–16Google Scholar
  47. Cohen Y (2006) Membrane surface nano-structuring: selective enhancement, fouling reduction and mineral scale formation. In US-Israeli Nanotechnology for water purification workshop, Arlington, pp 13–16Google Scholar
  48. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027CrossRefGoogle Scholar
  49. Daniel-Da-Silva AL, Loio R, Lopes-Da-Silva JA, Trindade T, Goodfellow BJ, Gil AM (2008) Effects of magnetite nanoparticles on the thermorheological properties of carrageenan hydrogels. J Colloid Interface Sci 324:205–211CrossRefGoogle Scholar
  50. Danilczuk M, Lund A, Saldo J, Yamada H, Michalik J (2006) Conduction electron spin resonance of small silver particles. Spectrochim Acta A 63:189–191CrossRefGoogle Scholar
  51. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998CrossRefGoogle Scholar
  52. DeFriend KA, Wiesner MR, Barron AR (2003) Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. J Membr Sci 224:11–28CrossRefGoogle Scholar
  53. Del Valle EMM (2004) Cyclodextrins and their uses. A review. Process Biochem 39:1033–1046CrossRefGoogle Scholar
  54. Delpla I, Baures E, Jung AV, Clement M, Thomas O (2011) Issues of drinking water quality of small scale water services towards climate change. Water Sci Technol 63:227–32CrossRefGoogle Scholar
  55. Deng S, Upadhyayula VKK, Smith GB, Mitchell MC (2008) Adsorption equilibrium and kinetics of microorganisms on single walled carbon nanotubes. IEEE Sens 8:954–62CrossRefGoogle Scholar
  56. Deng S, Fan H, Wang M, Zheng M, Yi J, Wu R, Tan H, Sow C, Ding J, Feng Y, Loh K (2010) Thiol-capped ZnO nanowire/nanotube arrays with tunable magnetic properties at room temperature. ACS Nano 4:495–505CrossRefGoogle Scholar
  57. Di Z-C, Ding J, Peng X-J, Li Y-H, Luan Z-K, Liang J (2006) Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere 62:861–865CrossRefGoogle Scholar
  58. Diallo MS, Christie S, Swaminathan P, Balogh L, Shi X, Um W, Papelis C, Goddard WA, Johnson JH (2004) Dendritic chelating agents 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20:2640–2651CrossRefGoogle Scholar
  59. Diallo MS, Christie S, Swaminathan P, Johnson JH, Goddard WA (2005) Dendrimer-enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using Gx-NH2PAMAM dendrimers with ethylene diamine core. Environ Sci Technol 39:1366–1377CrossRefGoogle Scholar
  60. Ding L, Zheng Y (2007) Nanocrystalline zeolite beta: the effect of template agent on crystal size. Mater Res Bull 42:584–590CrossRefGoogle Scholar
  61. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22CrossRefGoogle Scholar
  62. Donaldson K, Tran CL (2004) An introduction to the short-term toxicology of respirable industrial fibres. Mutat Res 553:5–9CrossRefGoogle Scholar
  63. Dotzauer DM, Dai J, Sun L, Bruening ML (2006) Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports. Nano Lett 6:2268–2272CrossRefGoogle Scholar
  64. Dvoranova D, Brezova V, Malati MA (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal B Environ 37:91–105CrossRefGoogle Scholar
  65. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178CrossRefGoogle Scholar
  66. Elliott D, Lien H-L, Zhang W-X (2008) Zerovalent iron nanoparticles for treatment of ground water contaminated by hexachlorocyclohexanes. J Environ Quality 37:2192–2201CrossRefGoogle Scholar
  67. Esteban-Cubillo A, Pecharromán C, Aguilar E, Santarén J, Moya JS (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. Mater Sci 41:5208–5212CrossRefGoogle Scholar
  68. Falcone IR, Humpage AR (2005) Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. Int J Environ Res Public Health 2:43–50CrossRefGoogle Scholar
  69. Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanaly Chem 393:81–95CrossRefGoogle Scholar
  70. Favre-Reguillon A, Lebuzit G, Fooz J, Guy A (2003) Selective concentration of uranium from seawater by nanofiltration. Ind Eng Chem Res 42:5900–5904CrossRefGoogle Scholar
  71. Figueira P, Lopes CB, Daniel-da-Silva AL, Pereira E, Duarte AC, Trindade T (2011) Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: application to synthetic and natural spiked waters. Water Res 45:5773–5784CrossRefGoogle Scholar
  72. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574CrossRefGoogle Scholar
  73. Frechet JMJ, Tomalia DA (2001) Dendrimers and other dendritic polymers. Wiley, New YorkCrossRefGoogle Scholar
  74. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  75. Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275CrossRefGoogle Scholar
  76. Girginova PI, Daniel-Da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, Pereira E, Trindade T (2010) Silica coated magnetite particles for magnetic removal of Hg(II) from water. J Colloid Interface Sci 345:234–240CrossRefGoogle Scholar
  77. Gondal MA, Dastageer MA, Khalil A (2009) Synthesis of nano-WO3 and its catalytic activity for enhanced antimicrobial process for water purification using laser induced photo-catalysis. Catal Commu 11:214–219CrossRefGoogle Scholar
  78. Guo LM, Li JT, Zhang LX, Li JB, Li YS, Yu CC, Shi JL, Ruan ML, Feng JW (2008) A facile route to synthesize magnetic particles within hollow mesoporous spheres and their performance as separable Hg2+ adsorbents. J Mater Chem 18:2733–2738CrossRefGoogle Scholar
  79. Harper S, Usenko C, Hutchison JE, Maddux BLS, Tanguay RL (2008) In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalisation and route of exposure. J Exp Nanosciences 3:195–206CrossRefGoogle Scholar
  80. Hatchett DW, Henry S (1996) Electrochemistry of sulfur adlayers on the low–index faces of silver. J Phys Chem 100:9854–9859Google Scholar
  81. Henmi M, Nakatsuji K, Ichikawa T, Tomioka H, Sakamoto T, Yoshio M, Kato T (2012) Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions. Adv Mater 24:2238–2241CrossRefGoogle Scholar
  82. He P, Zhao DY (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320CrossRefGoogle Scholar
  83. Hollman AM, Bhattacharyya D (2004) Pore assembled multilayers of charged polypeptides in microporous membranes for ion separation. Langmuir 20:5418–5424CrossRefGoogle Scholar
  84. Huang CZ, Hu B (2008) Silica-coated magnetic nanoparticles modified with gammamercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, CuHg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry. Spectrochim Acta B 63:437–444CrossRefGoogle Scholar
  85. Hu J, Chen GH, Lo IMC (2005a) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536CrossRefGoogle Scholar
  86. Hu J, Tonga Z, Hu Z, Chena G, Chenc T (2012) Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes. J Colloid Interface Sci 377:355–361CrossRefGoogle Scholar
  87. Hu JS, Ren LL, Guo YG, Liang HP, Cao AM, Wan LJ, Bai CL (2005b) Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew Chem Int Ed 44:1269–1273CrossRefGoogle Scholar
  88. Hyung H, Kim JH (2008) Natural organic matter (NOM) adsorption to multi walled carbon nanotubes: effect on NOM characteristics and water quality parameters. Environ Sci Technol 42:4416–21CrossRefGoogle Scholar
  89. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  90. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRefGoogle Scholar
  91. Indira TK, Lakshmi PK (2010) Magnetic nanoparticles—a review. Int J Pharm Sci Nanotec 3:1035–1044Google Scholar
  92. Irie H, Watanabe Y, Hashimoto K (2003) Carbon-doped anatase as a visible light-sensitive photocatalyst. Chem Lett 32:772–773CrossRefGoogle Scholar
  93. Ji P, Zhang J, Chen F, Anpo M (2009) Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Appl Catal B Environ 85:148–154CrossRefGoogle Scholar
  94. Jiang F, Zheng Z, Xu Z, Zheng S, Guo Z, Chen L (2006) Aqueous Cr(VI) photo-reduction catalyzed by TiO2 and sulfated TiO2. J Hazard Mater 134:94–103CrossRefGoogle Scholar
  95. Jikei M, Kakimoto M-A (2001) Hyperbranched polymers: a promising new class of materials. Prog Polym Sci 26:1233–1285CrossRefGoogle Scholar
  96. Jin J, Li R, Wang H, Chen H, Liang K, Ma J (2007) Magnetic Fe nanoparticle functionalized water-soluble multi-walled carbon nanotubules: towards the preparation of sorbent for aromatic compounds removal. Chem Commun 4:386–388CrossRefGoogle Scholar
  97. Kabra K, Chaudhary R, Sawhney RL (2004) Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind Eng Chem Res 43:7683–7696CrossRefGoogle Scholar
  98. Kamat P, Huehn R, Nicolaescu R (2002) A“sense and shoot” approach for photocatalytic degradation of organic contaminants in water. J Phys Chem B 106:788–794CrossRefGoogle Scholar
  99. Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano-scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050CrossRefGoogle Scholar
  100. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRefGoogle Scholar
  101. Keum YS, Li QX (2004) Reduction of nitroaromatic pesticides with zerovalent iron. Chemosphere 54:255–263CrossRefGoogle Scholar
  102. Khaydarov RA, Khaydarov RR, Gapurova O (2010) Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites. Water Res 44:1927–1933CrossRefGoogle Scholar
  103. Kim JS, Kuk E, Yu KM, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong D-H, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101CrossRefGoogle Scholar
  104. Kim J, Buggen BV (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158:2335–2349CrossRefGoogle Scholar
  105. Kim KT, Klaine SJ, Cho J, Kim SH, Kim SD (2010) Oxidative stress responses of Daphnia magna exposed to TiO(2) nanoparticles according to size fraction. Sci Total Environ 408:2268–2272CrossRefGoogle Scholar
  106. Kirchnerova J, Herrera Cohen M-L, Guy C, Klvana D (2005) Photocatalytic oxidation of n-butanol under fluorescent visible light lamp over commercial TiO2 (Hombicat UV100 and Degussa P25). Appl Catal A Gen 282:321–332CrossRefGoogle Scholar
  107. Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48:199–208Google Scholar
  108. Koper OB, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov P, Bohra L (2002) Nanoscale powders and formulations with biocidal activity towards spores and vegetative cells of Bacillus species, viruses, and toxins. Curr Microbiol 44:49–55CrossRefGoogle Scholar
  109. Langwaldt JH, Puhakka JA (2000) On-site biological remediation of contaminated groundwater: a review. Environ Pollut 107:187–197CrossRefGoogle Scholar
  110. Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6:651–663CrossRefGoogle Scholar
  111. Lee J-S, Chon H-T, Kim K-W (2005a) Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environ Geochem Health 27:185–191CrossRefGoogle Scholar
  112. Leiknes T (2009) The effect of coupling coagulation and flocculation with membrane filtration in water treatment: a review. J Environ Sci (China) 21:8–12
  113. Liga MV, Bryant BF, Colvin VL, Li Q (2011) Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res 45:535–544CrossRefGoogle Scholar
  114. Linder C, Oren Y (2006) Relationships between materials parameters of nanofiltration membranes and the resultant membrane performance. In US–Israeli: Nanotechnology for Water Purification Workshop, Arlington, Virginia, USA, March 13–16Google Scholar
  115. Li FB, Li XZ, Liu CS, Liu TX (2007) Effect of alumina on photocatalytic activity of iron oxides for bisphenol a degradation. J Hazard Mater 149:199–207CrossRefGoogle Scholar
  116. Li HD, Li Z, Liu T, Xiao X, Peng ZH, Deng L (2008) A novel technology for biosorption and recovery hexavalent chromium in wastewater by biofunctional magnetic beads. Bioresour Technol 99:6271–6279CrossRefGoogle Scholar
  117. Li L, Fan M, Brown RC, Van Leeuwen J (2006a) Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Environ Sci Tech 36:405–431CrossRefGoogle Scholar
  118. Li X-Q, Elliott DW, Zhang W-X (2006b) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122CrossRefGoogle Scholar
  119. Li Y-H, Ding J, Luan ZK, Di ZC, Zhu YF, Xu CL, Wu DH, Wei BQ (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multi-walled carbon nanotubes. Carbon 41:2787–2792CrossRefGoogle Scholar
  120. Li X-Q, Zhang W-X (2006) Iron nanoparticles, The core-shell structure and unique properties for Ni(II) sequestration. Langmuir 22:4638–4642CrossRefGoogle Scholar
  121. Liu L, Bai H, Sun DD (2012) Concurrent filtration and solar photocatalytic disinfection/ degradation using high-performance Ag/TiO2 nanofiber membrane. Water Res 46:1102–1112Google Scholar
  122. Liu Y, Su G, Zhang B, Jiang G, Yan B (2011) Nanoparticle-based strategies for detection and remediation of environmental pollutants. Analyst 136:872–877CrossRefGoogle Scholar
  123. Liu Y, Li J, Qiu X, Burda C (2006a) Novel TiO2 nanocatalysts for wastewater purification—tapping energy from the sun. Water Pract Technol 1:1–9Google Scholar
  124. Liu Y, Chen X, Li J, Burda C (2005a) Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere 61:11–18CrossRefGoogle Scholar
  125. Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005b) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345CrossRefGoogle Scholar
  126. Liu Z, He Y, Li F, Liu Y (2006b) Photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide. Environ Sci Pollut Res Int 13:328–332CrossRefGoogle Scholar
  127. Liu J-F, Zhao ZS, Jiang G-B (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954CrossRefGoogle Scholar
  128. Long QR, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123:2058–2059CrossRefGoogle Scholar
  129. López-Munoz MJ, Van Grieken R, Aguado J, Marugán J (2005) Role of the support on the activity of silica-supported TiO2 photocatalysts: structure of the TiO2/SBA-15 photocatalysts. Catal Today 101:307–314CrossRefGoogle Scholar
  130. Lu C, Chiu H (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145Google Scholar
  131. Lu C, Chung Y-L, Chang K-F (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39:183–189CrossRefGoogle Scholar
  132. Lu C, Chung Y-L, Chang K-F (2006a) Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. J Hazard Mater 138:304–310CrossRefGoogle Scholar
  133. Lu C, Chiu H, Liu C (2006b) Removal of zinc(II) from aqueous solution by purified carbon nanotubes: Kinetic and equilibrium studies. Ind Eng Chem Res 45:2850–2855Google Scholar
  134. Lu C, Chiu H, Bai H (2007) Comparisons of adsorbent cost for the removal of zinc(II) from aqueous solution by carbon nanotubes and activated carbon. J Nanosci Nanotechnol 7:1647–1652Google Scholar
  135. Lu C, Liu L (2006) Removal of nickel(II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81:1932–1940CrossRefGoogle Scholar
  136. Madigan M, Martinko J (2005) Brock Biology of Microorganisms, 11th edn. Prentice Hall Publishers, Englewood CliffsGoogle Scholar
  137. Makhluf S, Dror R, Nitzan Y, Abramovich A, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. S Adv Funct Mater 15:1708–1715CrossRefGoogle Scholar
  138. Margeta K, Vojnovi B, Zabukovec LN (2011) Development of natural zeolites for their use in water-treatment systems. Recent Patents on Nanotech 5:89–99CrossRefGoogle Scholar
  139. Maynard AD (2007) Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51:1–12CrossRefGoogle Scholar
  140. Miyagawa H, Misra M, Mohanty AK (2005) Mechanical properties of carbon nanotubes and their polymer nanocomposites. J Nanosci Nanotechnol 5:1593–1615CrossRefGoogle Scholar
  141. Mohsen MS, Jaber JO, Afonso MD (2003) Desalination of brackish water by nanofiltration and reverse osmosis. Desalination 157:167–177CrossRefGoogle Scholar
  142. Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S (2010) Role of oxidative damage in toxicity of particulates. Free Radic Res 44:1–46CrossRefGoogle Scholar
  143. Moon J, Yun CY, Chung K-W, Kang MS, Yi J (2003) Photocatalytic activation of TiO2 under visible light using Acid Red 44. Catal Today 87:77–86CrossRefGoogle Scholar
  144. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976CrossRefGoogle Scholar
  145. Moreno N, Querol X, Ayora C (2001) Utilization of zeolites synthesized from coal fly ash for the purification of acid mines water. Environ Sci Technol 35:3526–3534CrossRefGoogle Scholar
  146. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JP, Yacaman MY (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  147. Mostafavi ST, Mehrnia MR, Rashidi AM (2009) Preparation of nanofilter from carbon nanotubes for application in virus removal from water. Desalination 238:271–280CrossRefGoogle Scholar
  148. Mpenyana-Monyatsi L, Mthombeni NH, Onyango MS, Momba MN (2012) Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int J Environ Res Public Health 9:244–71CrossRefGoogle Scholar
  149. Nahar S, Hasegawa K, Kagaya S (2006) Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. Chemosphere 65:1976–1982CrossRefGoogle Scholar
  150. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  151. Neumann B, Bogdanoff P, Tributsch H, Sakthivel S, Kisch H (2005) Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. J Phys Chem B 109:16579–16586CrossRefGoogle Scholar
  152. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230CrossRefGoogle Scholar
  153. Nutt MO, Heck KN, Alvarez P, Wong MS (2006) Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl Catal B Environ 69:115–125CrossRefGoogle Scholar
  154. Oberdörster E (2004) Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062CrossRefGoogle Scholar
  155. Oberdörster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder AC (2000) Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst 96:5–86Google Scholar
  156. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  157. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445CrossRefGoogle Scholar
  158. Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25CrossRefGoogle Scholar
  159. Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120CrossRefGoogle Scholar
  160. Oh S-M, Kim S-S, Lee JE, Ishigaki T, Park D-W (2003) Effect of additives on photocatalytic activity of titanium dioxide powders synthesized by thermal plasma. Thin Solid Films 435:252–258CrossRefGoogle Scholar
  161. Ohno T, Mitsui T, Matsumura M (2003) Photocatalytic activity of S-doped photocatalyst under visible light. Chem Lett 32:364–365CrossRefGoogle Scholar
  162. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) Morphology of a TiO2 photocatalyst (Degussa P-25) consisting of anatase and rutile crystalline phases. J Catal 203:82–86CrossRefGoogle Scholar
  163. Orha C, Pop A, Lazau C, Grozescu I, Tiponut V, Manea F (2011) Structural characterization and the sorption properties of the natural and synthetic zeolite. J Optoelectron Adv Mater 13:544–549Google Scholar
  164. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRefGoogle Scholar
  165. Palmer RA, Doan TM, Lloyd PG, Jarvis BL, Ahmed NU (2002) Reduction of TiO2 with hydrogen plasma. Plasma Chem Plasma P 3:335–350CrossRefGoogle Scholar
  166. Peltier S, Cotte E, Gatel D, Herremans L, Cavard J (2003) Nanofiltration improvements of water quality in a large distribution system. Water Supply 3:193–200Google Scholar
  167. Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X (2005) Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res 39:2327–2337CrossRefGoogle Scholar
  168. Peng XJ, Li YH, Luan ZK, Di ZC, Wang HY, Tian BH, Jia ZP (2003) Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376:154–158CrossRefGoogle Scholar
  169. Peng XJ, Luan ZK, Ding J, Di ZC, Li YH, Tian BH (2005) Ceria nanoparticles supported nanotubes for the removal of arsenate from water. Mater Lett 59:399–403CrossRefGoogle Scholar
  170. Pereira R, Rocha-Santos TAP, Antunes FE, Rasteiro MG, Ribeiro R, Gonçalves F, Soares AMVM, Lopes I (2012) Screening evaluation of the ecotoxicity and genotoxicity of soils contaminated with organic and inorganic nanoparticles: the role of ageing. J Haz Mat 194:345–354CrossRefGoogle Scholar
  171. Petersen EJ, Nelson BC (2010) Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Analy Bioanaly Chem 398:613–650CrossRefGoogle Scholar
  172. Poinern GEJ, Parsonage D, Issa TB, Ghosh MK, Paling E, Singh P (2010) Preparation, characterization and As(V) adsorption behaviour of CNT-ferrihydrite composites. IJEST 8:13–24Google Scholar
  173. Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569CrossRefGoogle Scholar
  174. Qin F, Li G, Wang R, Wu J, Sun H, Chen R (2012) Template-free fabrication of Bi2O3 and (BiO)2CO3 nanotubes and their application in water treatment. Chem Eur J 00Google Scholar
  175. Qin JJ, Oo MH, Kekre KA (2007) Nanofiltration for recoveringwastewater from a specific dyeing facility. Sep Pur Tech 56:199–203CrossRefGoogle Scholar
  176. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2002) Size-dependent chemistry: properties of nanocrystals. Chem Eur J 8:28–35CrossRefGoogle Scholar
  177. Ritchie SMC, Kissick KE, Bachas LG, Sikdar SK, Parikh C, Bhattacharyya D (2001) Polycysteine and other polyamino acid functionalized microfiltration membranes for heavy metal capture. Environ Sci Technol 35:3252–3258CrossRefGoogle Scholar
  178. Rickerby DG, Morrison M (2007) Nanotechnology and the environment: a European perspective. STAM 8:19–24Google Scholar
  179. Riu J, Maroto A, Rius FX (2006) Nanosensors in environmental analysis. Talanta 69:288–301CrossRefGoogle Scholar
  180. Rivas BL, Pereira ED, Moreno-Villoslada I (2003) Water soluble polymer-metal ion interactions. Prog Polym Sci 28:173–208CrossRefGoogle Scholar
  181. Romero M, Blanco J, Sanchez B, Vidal A, Malato S, Cardona AI, Garcia E (1999) Solar photocatalytic degradation of water and air pollutants: challenges and perspectives. Solar Energy 66:169–182CrossRefGoogle Scholar
  182. Romanos GE, Athanasekou CP, Katsaros FK, Kanellopoulos NK, Dionysiou DD, Likodimos V, Falaras P (2011) Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. J Hazard Mater 211:304–316CrossRefGoogle Scholar
  183. Rozell DJ, Reaven SJ (2011) Water pollution risk associated with natural gas extraction from the marcellus shale. Risk Anal 111:1539–6924Google Scholar
  184. Rozemeijer JC, Broers HP (2007) The groundwater contribution to surface water contamination in a region with intensive agricultural land use (Noord-Brabant, The Netherlands). Environ Pollut 148:695–706CrossRefGoogle Scholar
  185. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2006) Penetration of intact skin by quantum dots with diverse physiochemical properties. Toxicol Sci 91:159–165CrossRefGoogle Scholar
  186. Sakthivel S, Shankar VM, Palanichamy M, Arabindoo B, Bahnemann DW, Murugesan V (2004) Enhancement of photocatalytic activity by metal deposition: characterization and photonic efficiency of Pt:Au and Pd deposited on TiO2 catalyst. Water Res 38:3001–3008CrossRefGoogle Scholar
  187. Saleh NB, Pfefferle LD, Elimelech M (2008) Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environ Sci Technol 42:7963–9CrossRefGoogle Scholar
  188. Salipira KL, Mamba BB, Krause RW, Malefetse TJ, Durbach SH (2007) Carbon nanotubes and cyclodextrin polymers for removing organic pollutants from water. Environ Chem Lett 5:13–17CrossRefGoogle Scholar
  189. Sánchez A, Recillas S, Font X, Casals E, González E, Puntes V (2011) Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. Trends in Analy Chem 30:507–516CrossRefGoogle Scholar
  190. Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342CrossRefGoogle Scholar
  191. Sawicki R, Mercier L (2006) Evaluation of mesoporous cyclodextrin-silica nanocomposites for the removal of pesticides from aqueous media. Environ Sci Technol 40:1978–1983CrossRefGoogle Scholar
  192. Schneiderman E, Stalcup AM (2000) Cyclodextrins: a versatile tool in separation science. J Chromatogr B 745:83–102CrossRefGoogle Scholar
  193. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077CrossRefGoogle Scholar
  194. Scott RL, Datta S, Gui M, Coker EL, Huggins FE, Daunert S, Bachas L, Bhattacharyya D (2011) Reactive nanostructured membranes for water purification. PNAS 108:8577–8582CrossRefGoogle Scholar
  195. Sheha RR, El-Zahhar AA (2008) Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions. J Hazard Mater 150:795–803CrossRefGoogle Scholar
  196. Shin S, Jang J (2007) Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions. Chem Commun 10:4230–4232CrossRefGoogle Scholar
  197. Simate GS, Iyuke SE, Ndlovu S, Heydenrych M, Walubita LF (2012) Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environ Inter 39:38–49CrossRefGoogle Scholar
  198. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 103:3357–3362CrossRefGoogle Scholar
  199. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroevee P, Mahmoudm M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343CrossRefGoogle Scholar
  200. Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L (2009) Preparation and application of magnetic Fe3O4nanoparticles for wastewater purification. Sep Purif Technol 68:312–319CrossRefGoogle Scholar
  201. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225-230Google Scholar
  202. Smith A (2006) Nanotech—the way forward for clean water? Filtr Separat 43:32–33CrossRefGoogle Scholar
  203. Som C, Wick P, Krug H, Nowack B (2011) Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environ Int 37:1131–1142CrossRefGoogle Scholar
  204. Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25:1632–1637CrossRefGoogle Scholar
  205. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:1770–1782Google Scholar
  206. Song W, Grassian VH, Larsen SC (2005a) High yield method for nanocrystalline zeolite synthesis. Chem Commun 20:2951–2953CrossRefGoogle Scholar
  207. Song W, Li G, Grassian VH, Larsen SC (2005b) Development of improved materials for environmental applications: nanocrystalline NaY zeolites. Environ Sci Technol 39:1214–1220CrossRefGoogle Scholar
  208. Song W, Justice RE, Jones CA, Grassian VH, Larsen SC (2004) Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5. Langmuir 20:8301–8306CrossRefGoogle Scholar
  209. Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM (2004) Carbon nanotube filters. Nature Mate 3:610–614CrossRefGoogle Scholar
  210. Stanton BW, Harris JJ, Miller MD, Bruening ML (2003) Ultrathin, multilayered polyelectrolyte films as nanofiltration membranes. Langmuir 19:7038–7042CrossRefGoogle Scholar
  211. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686CrossRefGoogle Scholar
  212. Sprenger C, Lorenzen G, Hülshoff I, Grützmacher G, Ronghang M, Pekdeger A (2011) Vulnerability of bank filtration systems to climate change. Sci Total Environ 15:655–663CrossRefGoogle Scholar
  213. Strathmann H (2001) Membrane separation processes: current relevance and future opportunities. AIChE J 47:1077–1087CrossRefGoogle Scholar
  214. Sun Y-P, Li X-Q, Cao J, Zhang W-X, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56CrossRefGoogle Scholar
  215. Sun D, Meng TT, Loong TH, Hwa TJ (2004) Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane. Wat Sci Technol 49:103–110Google Scholar
  216. Tavolaro A, Tavolaro P, Drioli E (2007) Zeolite inorganic supports for BSA immobilization: comparative study of several zeolite crystals and composite membranes. Colloids Surf B Biointerfaces 55:67–76CrossRefGoogle Scholar
  217. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69CrossRefGoogle Scholar
  218. Tick GR, Lourenso F, Wood AL, Brusseau ML (2003) Pilot-scale demonstration of cyclodextrin as a solubility-enhancement agent for remediation of a tetrachloroethene-contaminated aquifer. Environ Sci Technol 37:5829–5834CrossRefGoogle Scholar
  219. Tofighy MA, Mohammadi T (2011) Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mate 185:140–147CrossRefGoogle Scholar
  220. Top A, Ülkü S (2004) Silver, zinc and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl Clay Sci 27:13–19CrossRefGoogle Scholar
  221. Tully DC, Frechet JMJ (2001) Dendrimers at surfaces and interfaces: chemistry and applications. J Chem Commun 14:1229–1239CrossRefGoogle Scholar
  222. Tuutijärvi T, Lu J, Sillanpää M, Chen G (2009) As(V) adsorption on maghemite nanoparticles. J Hazard Mater 66:1415–1420CrossRefGoogle Scholar
  223. Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200CrossRefGoogle Scholar
  224. Upadhyayula KKV, Deng S, Mitchell MC, Smith GB (2009) Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ 408:1–13CrossRefGoogle Scholar
  225. Urbansky ET, Schock MR (1999) Issues in managing the risks associated with perchlorate in drinking water. J Environ Manage 56:79–95CrossRefGoogle Scholar
  226. US Environmental Protection Agency (1998) Microbial and disinfection by-product rules. Federal Register 63: 69389–69476Google Scholar
  227. US Environmental Protection Agency (1999) Alternative disinfectants and oxidants guidance manual. EPA Office of Water Report 815-R-99-014.Google Scholar
  228. Uzum C, Shahwan T, Eroglu AE, Hallam KR, Scott TB, Lieberwirth I (2009) Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl Clay Sci 43:172–181CrossRefGoogle Scholar
  229. Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122:435–445CrossRefGoogle Scholar
  230. Vaseashta A, Vaclavikova M, Vaseashta S, Gallios G, Roy P, Pummakarnchana O (2007) Nanostructures in environmental pollution detection, monitoring, and remediation. STAM 8:47–59Google Scholar
  231. Viessman W, Hammer MJ, Perez EM, Chadik PA (2008) Water supply and pollution control, 8th edn. Addison-Wesley Longman Publishers, Menlo ParkGoogle Scholar
  232. Vuković GD, Marinković AD, Čolić M, Ristić DM, Radoslav A, Aleksandra AP-G, Uskoković PS (2010) Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chemical Eng J 157:238–248CrossRefGoogle Scholar
  233. Walha K, Amar BR, Firdaous L, Quéméneur F, Jaouen P (2007) Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison. Desalination 207:95–106CrossRefGoogle Scholar
  234. Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi JW, Zhang F, Zhao YL, Chai ZF (2006) Acute toxicity of nano- and microscale zinc powder in healthy adult mice. Toxicol Lett 161:115–123CrossRefGoogle Scholar
  235. Wang H, Yang L, Yu H, Peng F (2011) A highly efficient and stable visible-light plasmonic photocatalyst Ag–AgCl/CeO2. WJNSE 1:129–136Google Scholar
  236. Warner CL, Addleman RS, Cinson AD, Droubay TC, Engelhard MH, Nash MA, Yantasee W, Warner MG (2010) High-performance, superparamagnetic, nanoparticle- based heavy metal sorbents for removal of contaminants from natural waters. ChemSusChem 3:749–757CrossRefGoogle Scholar
  237. Wegmann M, Michen B, Graule T (2008) Nanostructured surface modification of microporous ceramics for efficient virus filtration. J Eur Ceram Soc 28:1603–1612CrossRefGoogle Scholar
  238. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345CrossRefGoogle Scholar
  239. Xu X, Zhou M, He P, Hao Z (2005) Catalytic reduction of chlorinated and recalcitrant compounds in contaminated water. J Hazard Mater 123:89–93CrossRefGoogle Scholar
  240. Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108CrossRefGoogle Scholar
  241. Yan XM, Shi BY, Lu JJ, Feng CH, Wang DS, Tang HX (2008) Adsorption and desorption of atrazine on carbon nanotubes. J Colloid Interface Sci 321:30–38CrossRefGoogle Scholar
  242. Yan H, Gong A, He H, Zhou J, Wei Y, Lv L (2006) Adsorption of microcystins by carbon nanotubes. Chemosphere 62:142–8CrossRefGoogle Scholar
  243. Yang MC, Yang TS, Wong MS (2004) Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition. Thin Solid Films 469:1–5CrossRefGoogle Scholar
  244. Yang J, Zhang J, Zhu L, Chen S, Zhang Y, Tang Y, Zhua Y, Li Y (2006) Synthesis of nano-titania particles embedded in mesoporous SBA-15: characterization and photocatalytic activity. J Hazard Mater 137:952–958CrossRefGoogle Scholar
  245. Yang GCC, Lee H-L (2005) Chemical reduction of nitrate by nano-sized iron, kinetics and pathways. Water Res 39:884–894CrossRefGoogle Scholar
  246. Yang GCC, Li CJ (2008) Tubular TiO2/Al2O3 composite membranespreparation, characterization and performance in electrofiltration of oxide-CMP wastewater. Desalination 234:354–361CrossRefGoogle Scholar
  247. Yang Y, Ren N, Zhang Y, Tang Y (2009) Nanosized cadmium sulfide in polyelectrolyte protected mesoporous sphere: a stable and regeneratable photocatalyst for visible-light-induced removal of organic pollutants. J Photochem Photobiol A Chem 201:111–120CrossRefGoogle Scholar
  248. Yates CR, Hayes W (2004) Synthesis and applications of hyperbranched polymers. Eur Polym J 40:1257–1281CrossRefGoogle Scholar
  249. Yu JC, Ho W, Yu J, Yip H, Wong PK, Zhao J (2005) Efficient visible light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol 39:1175–1179CrossRefGoogle Scholar
  250. Yu JC, Wu L, Lin J, Li P, Li Q (2003) Microemulsion-mediated solvo-thermal synthesis of nanosized CdS-sensitized TiO2 crystalline photocatalyst. Chem Commun 8:1552–1553CrossRefGoogle Scholar
  251. Zeman LJ, Zydney AL (1996) Microfiltration and ultrafiltration principles and applications. Marcel Dekker, New YorkGoogle Scholar
  252. Zhai R, Wan Y, Liu L, Zhang X, Wang W, Liu J, Zhang B (2012) Hierarchical MnO2 nanostructures: synthesis and their application in water treatment. Water Sci Technol 65:1054–1059CrossRefGoogle Scholar
  253. Zhai Y, Zhang S, Pang H (2007) Preparation, characterization and photocatalytic activity of CeO2 nanocrystalline using ammonium bicarbonate as precipitant. Mater Lett 61:1863-1866Google Scholar
  254. Zhang LD, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5:128–142CrossRefGoogle Scholar
  255. Zhang H, Quan X, Chen S, Zhao H, Zhao Y (2006) Fabrication of photocatalyticmembrane and evaluation its efficiency in removal of organic pollutants from water. Sep Purif Technol 50:147–155CrossRefGoogle Scholar
  256. Zhang W-X (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  257. Zhang W-X, Wang CB, Lien HL (1998a) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395CrossRefGoogle Scholar
  258. Zhang Z, Wang C-C, Zakaria R, Ying JY (1998b) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102:10871–10878CrossRefGoogle Scholar
  259. Zhang X, Zhang F, Chan KY (2005) Synthesis of titania-silica mixed oxide mesoporous materials, characterization and photocatalytic properties. Appl Catal A 284:193–198CrossRefGoogle Scholar
  260. Zhan W-X, Elliott DW (2006) Applications of iron nanoparticles for groundwater remediation. Remediation 16:7–21CrossRefGoogle Scholar
  261. Zhao GJ, Stevens SE (1998) Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11:27–32CrossRefGoogle Scholar
  262. Zhao X, Wang J, Wu F, Wang T, Cai Y, Shi Y, Jiang G (2010) Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles. J Hazard Matter 173:102–109CrossRefGoogle Scholar
  263. Zhou Q, Xiao J, Wang W (2006a) Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection. J Chromatogr A 1125:152–158CrossRefGoogle Scholar
  264. Zhou Q, Xiao J, Wang W, Li G, Shi Q, Wang J (2006b) Determination of atrazine and simazine in environmental water samples using multi-walled carbon nanotubes as the adsorbents for preconcentration prior to high performance liquid chromatography with diode array detector. Talanta 68:1309–1315CrossRefGoogle Scholar
  265. Zhou Q, Xiao J, Wang W (2007) Comparison of multi-walled carbon nanotubes and a conventional absorbent on the enrichment of sulfonylurea herbicides in water samples. Anal Sci 23:189–192CrossRefGoogle Scholar
  266. Zhu S, Oberdörster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C(60)) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62:S5–S9CrossRefGoogle Scholar
  267. Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez PJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43:715–723CrossRefGoogle Scholar

Copyright information

© European Union 2013

Authors and Affiliations

  • Iram Mohmood
    • 1
  • Cláudia Batista Lopes
    • 1
  • Isabel Lopes
    • 2
  • Iqbal Ahmad
    • 1
  • Armando C. Duarte
    • 1
  • Eduarda Pereira
    • 1
  1. 1.Department of Chemistry and CESAMUniversity of AveiroAveiroPortugal
  2. 2.Department of Biology and CESAMUniversity of AveiroAveiroPortugal

Personalised recommendations